
a

ADSP-2136x SHARC® Processor
Programming Reference

 Revision 1.1, March 2007

Part Number
82-000500-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, the SHARC
logo, TigerSHARC, and VisualDSP++ are registered trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-2136x SHARC Processor Programming Reference iii

Contents

PREFACE

Purpose of This Manual .. xxiii

Intended Audience .. xxiii

Manual Contents ... xxiv

What’s New in This Manual ... xxvi

Technical or Customer Support .. xxvi

Supported Processors ... xxvii

Product Information ... xxvii

MyAnalog.com ... xxviii

Processor Product Information .. xxviii

Related Documents .. xxix

Online Technical Documentation .. xxx

Accessing Documentation From VisualDSP++ xxxi

Accessing Documentation From Windows xxxi

Accessing Documentation From the Web xxxii

Printed Manuals .. xxxii

VisualDSP++ Documentation Set xxxii

Hardware Tools Manuals .. xxxiii

Contents

iv ADSP-2136x SHARC Processor Programming Reference

Processor Manuals ... xxxiii

Data Sheets ... xxxiii

Conventions ... xxxiv

INTRODUCTION

ADSP-2136x Design Advantages ... 1-1

ADSP-2136x Architectural Overview .. 1-5

Processor Core .. 1-6

Processing Elements .. 1-6

Program Sequence Control ... 1-7

Processor Internal Buses .. 1-10

Processor Peripherals ... 1-11

Internal Memory (SRAM) .. 1-13

Timers ... 1-14

JTAG Port .. 1-14

Rom Based Security .. 1-14

Development Tools ... 1-15

Differences From Previous SHARC Processors 1-15

Processor Core Enhancements ... 1-16

Processor Internal Bus Enhancements 1-16

Memory Organization Enhancements 1-17

JTAG Port Enhancements ... 1-17

Instruction Set Enhancements ... 1-17

ADSP-2136x SHARC Processor Programming Reference v

Contents

PROCESSING ELEMENTS

Numeric Formats .. 2-2

IEEE Single-Precision Floating-Point Data Format 2-2

Extended-Precision Floating-Point Format 2-5

Short Word Floating-Point Format ... 2-6

Packing for Floating-Point Data ... 2-6

Fixed-Point Formats .. 2-8

Setting Computational Modes ... 2-11

32-Bit Floating-Point Format (Normal Word) 2-12

40-Bit Floating-Point Format ... 2-13

16-Bit Floating-Point Format (Short Word) 2-13

32-Bit Fixed-Point Format ... 2-14

Rounding Mode .. 2-14

Using Computational Status .. 2-15

Arithmetic Logic Unit (ALU) .. 2-16

ALU Operation ... 2-17

ALU Saturation ... 2-17

ALU Status Flags ... 2-18

ALU Instruction Summary .. 2-19

Multiply Accumulator (Multiplier) .. 2-22

Multiplier Operation ... 2-22

Multiplier Result Register (Fixed-Point) 2-23

Multiplier Status Flags ... 2-26

Multiplier Instruction Summary .. 2-27

Contents

vi ADSP-2136x SHARC Processor Programming Reference

Barrel Shifter (Shifter) .. 2-30

Shifter Operation .. 2-30

Shifter Status Flags .. 2-34

Shifter Instruction Summary ... 2-35

Data Register File ... 2-37

Alternate (Secondary) Data Registers ... 2-39

Multifunction Computations .. 2-41

Secondary Processing Element (PEy) ... 2-45

Dual Compute Units Sets .. 2-46

Dual Register Files .. 2-48

Dual Alternate Registers .. 2-49

SIMD (Computational) Operations 2-49

SIMD and Status Flags .. 2-52

PROGRAM SEQUENCER

Instruction Pipeline .. 3-2

Memory Conflicts .. 3-5

Bus Conflicts .. 3-5

Block Conflicts ... 3-7

Instruction Cache ... 3-8

Using the Cache .. 3-8

Optimizing Cache Usage ... 3-9

Instruction Pipeline Stalls ... 3-11

Structural Hazard Stalls ... 3-12

Data Access and Instruction Fetch on the PM Bus 3-12

ADSP-2136x SHARC Processor Programming Reference vii

Contents

Data Access Over the DM and PM Buses 3-12

Update and Load Index Register .. 3-13

Reading I, M, B, L Registers .. 3-13

DMA Block Conflict with PM or DM Access 3-13

Data and Control Hazard Stalls ... 3-14

Address Generation ... 3-14

Branch .. 3-16

Compute with Post-modify ... 3-17

A JUMP With a LA Modifier Is Used To Abort a Loop 3-18

Loops ... 3-18

Stalls in Conditional Branches ... 3-19

Address Generation Using I Registers After a CJUMP 3-20

RFRAME Instruction .. 3-21

Other Instructions .. 3-22

Latency ... 3-22

Branches and Sequencing .. 3-26

Conditional Branches .. 3-28

Delayed Branches .. 3-29

Restrictions and Limitations When Using Delayed Branches 3-32

Other Jumps, or Calls With RTI, RTS 3-32

Pushes or Pops of the PC Stack 3-33

Writes to the PC Stack or PC Stack Pointer 3-34

IDLE Instruction .. 3-35

Stacks and Sequencing .. 3-35

Contents

viii ADSP-2136x SHARC Processor Programming Reference

Loops and Sequencing .. 3-37

Counter Based Loops .. 3-37

Arithmetic Loops .. 3-39

Conditional Sequencing .. 3-40

Restrictions on Ending Loops .. 3-43

Short Loops .. 3-44

Restrictions on Short Loops .. 3-46

Evaluation of NOT LCE Condition in Counter Based Loops 3-52

Arithmetic or Non-Counter Based Loops 3-53

Loop Address Stack ... 3-55

Loop Status ... 3-56

SIMD Mode and Sequencing .. 3-58

Conditional Compute Operations ... 3-61

Conditional Branches and Loops ... 3-61

Conditional Data Moves ... 3-61

Case #1: Complementary Register Pair Data Move 3-62

Example 1 – Register-to-Memory Move – PEx Explicit Register
3-62

Example 2 Register-to-Memory Move – PEy Explicit Register
3-63

Example 3 Register-to-Register Move – PEx Explicit Registers
3-63

Example 4 Register-to-Register Move – PEy Explicit Register .
3-64

Case #2: Uncomplimentary-to-Complementary
Register Move .. 3-65

ADSP-2136x SHARC Processor Programming Reference ix

Contents

Case #3: Complementary-to-Uncomplimentary
Register Move .. 3-66

Case #4: External Memory or IOP Memory Space Data Move 3-67

Example: Register-to-Memory Moves – IOP Memory
Space Data Move .. 3-68

Case #5: Uncomplimentary Register Data Move 3-68

Case #6: Conditional DAG Operations 3-68

Interrupts and Sequencing ... 3-68

Sensing External Interrupts .. 3-74

Masking Interrupts .. 3-76

Latching Interrupts .. 3-76

Stacking Status During Interrupts .. 3-78

Nesting Interrupts ... 3-79

Reusing Interrupts ... 3-81

Interrupting IDLE ... 3-82

Summary .. 3-83

DATA ADDRESS GENERATORS

Setting DAG Modes .. 4-2

Circular Buffering Mode .. 4-4

Broadcast Loading Mode ... 4-5

Alternate (Secondary) DAG Registers 4-6

Example 1 ... 4-8

Example 2 ... 4-8

Bit-Reverse Addressing Mode ... 4-8

Contents

x ADSP-2136x SHARC Processor Programming Reference

Using DAG Status .. 4-9

DAG Operations .. 4-10

Addressing With DAGs ... 4-10

Data Addressing Stalls ... 4-12

Addressing Circular Buffers ... 4-13

Modifying DAG Registers ... 4-19

Addressing in SISD and SIMD Modes 4-20

DAGs, Registers, and Memory .. 4-20

DAG Register-to-Bus Alignment ... 4-21

DAG Register Transfer Restrictions 4-23

DAG Instruction Summary ... 4-24

MEMORY

Internal Memory .. 5-3

Processor Memory Architecture ... 5-3

Buses .. 5-5

Internal Address and Data Buses .. 5-5

Internal Data Bus Exchange .. 5-7

ADSP-2136x Memory Maps ... 5-12

Internal Memory ... 5-13

Shared Memory .. 5-16

External Memory .. 5-16

External Address Space ... 5-17

SDRAM Address Mapping .. 5-18

Memory Organization and Word Size 5-19

ADSP-2136x SHARC Processor Programming Reference xi

Contents

Placing 32-Bit and 48-Bit Words 5-20

Mixing 32-Bit Words and 48-Bit Words 5-21

Restrictions on Mixing 32-Bit Words and 48-Bit Words 5-23

Example: Calculating a Starting Address for 32-Bit Addresses 5-25

48-Bit Word Allocation ... 5-25

Using Boot Memory .. 5-26

Reading From Boot Memory ... 5-26

Internal Interrupt Vector Table .. 5-26

Internal Memory Data Width .. 5-27

Secondary Processor Element (PEy) .. 5-28

Broadcast Register Loads ... 5-28

Illegal I/O Processor Register Access 5-29

Unaligned 64-Bit Memory Access .. 5-29

Using Memory Access Status ... 5-30

Accessing Memory .. 5-31

Access Word Size ... 5-32

Long Word (64-Bit) Accesses ... 5-32

Instruction Word (48-Bit) and
Extended-Precision Normal Word (40-Bit) Accesses 5-34

Normal Word (32-Bit) Accesses ... 5-35

Short Word (16-Bit) Accesses .. 5-35

Setting Data Access Modes .. 5-35

SYSCTL Register Control Bits .. 5-36

Mode 1 Register Control Bits .. 5-36

Mode 2 Register Control Bits .. 5-37

Contents

xii ADSP-2136x SHARC Processor Programming Reference

SISD, SIMD, and Broadcast Load Modes 5-37

Single- and Dual-Data Accesses ... 5-37

Instruction Examples .. 5-38

Data Access Options ... 5-38

Short Word Addressing of Single-Data in SISD Mode 5-39

Short Word Addressing of Single-Data in SIMD Mode 5-42

Short Word Addressing of Dual-Data in SISD Mode 5-44

Short Word Addressing of Dual-Data in SIMD Mode 5-46

32-Bit Normal Word Addressing of Single-Data in SISD Mode 5-48

32-Bit Normal Word Addressing of Single-Data in SIMD Mode
5-50

32-Bit Normal Word Addressing of Dual-Data in SISD Mode 5-52

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode 5-54

Extended-Precision Normal Word Addressing of Single-Data 5-56

Extended-Precision Normal Word Addressing of Dual-Data in SISD
Mode .. 5-58

Extended-Precision Normal Word Addressing of Dual-Data in SIMD
Mode .. 5-60

Long Word Addressing of Single-Data 5-62

Long Word Addressing of Dual-Data in SISD Mode 5-64

Long Word Addressing of Dual-Data in SIMD Mode 5-66

Mixed-Word Width Addressing of Dual-Data in SISD Mode 5-68

Mixed-Word Width Addressing of Dual-Data in SIMD Mode 5-70

Broadcast Load Access .. 5-72

Shadow Write FIFO ... 5-81

ADSP-2136x SHARC Processor Programming Reference xiii

Contents

Shadow Write FIFO Use in SIMD Mode 5-81

JTAG TEST EMULATION PORT

JTAG Test Access Port ... 6-1

Boundary Scan .. 6-2

Background Telemetry Channel (BTC) .. 6-4

User-Definable Breakpoint Interrupts .. 6-4

Restrictions ... 6-5

Silicon Revision ID ... 6-5

JTAG Related Registers ... 6-5

Instruction Register ... 6-6

Emulation Control Register (EMUCTL) 6-8

Breakpoint Control Register (BRKCTL) 6-11

Breakpoint Registers (PSx, DMx, IOx, and EPx) 6-11

Enhanced Emulation Status Register (EEMUSTAT) 6-13

EEMUIN Register ... 6-14

EEMUOUT Register ... 6-14

Emulation Clock Counter Registers (EMUCLK, EMUCLK2) 6-14

Boundary Register ... 6-15

EMUN Register .. 6-15

EMUIDLE Instruction .. 6-15

Operating System Process ID Register (OSPID) 6-16

Private Instructions ... 6-17

References ... 6-17

Contents

xiv ADSP-2136x SHARC Processor Programming Reference

TIMER

Timer Architecture ... 7-1

Timer and Sequencing .. 7-3

Timer Status and Control ... 7-5

Timer Interrupts ... 7-7

Enabling a Timer .. 7-8

Pulse Width Modulation Mode (PWM_OUT) 7-9

PWM Waveform Generation .. 7-11

Single-Pulse Generation .. 7-12

Pulse Width Count and Capture Mode (WDTH_CAP) 7-12

External Event Watchdog Mode (EXT_CLK) 7-14

Timer Programming Examples .. 7-15

INSTRUCTION SET

Group I Instructions ... 8-1

Type 1: Compute, Dreg«···»DM | Dreg«···»PM 8-3

Type 2: Compute .. 8-6

Type 3: Compute, ureg«···»DM | PM, register modify 8-8

Type 4: Compute, dreg«···»DM | PM, data modify 8-13

Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg 8-18

Type 6: Immediate Shift, dreg«···»DM | PM 8-22

Type 7: Compute, modify ... 8-27

Group II Instructions ... 8-30

Type 8: Direct Jump | Call .. 8-31

ADSP-2136x SHARC Processor Programming Reference xv

Contents

Type 9: Indirect Jump | Call, Compute .. 8-35

Type 10: Indirect Jump | Compute, dreg«···»DM 8-42

Type 11: Return From Subroutine | Interrupt, Compute 8-48

Type 12: Do Until Counter Expired .. 8-53

Type 13: Do Until ... 8-55

Group III Instructions ... 8-57

Type 14: Ureg«···»DM | PM (direct addressing) 8-59

Type 15: Ureg«···»DM | PM (indirect addressing) 8-62

Type 16: Immediate data···»DM | PM ... 8-66

Type 17: Immediate data···»Ureg ... 8-69

Group IV Instructions ... 8-71

Type 18: System Register Bit Manipulation 8-72

Type 19: I Register Modify | Bit-Reverse 8-75

Type 20: Push, Pop Stacks, Flush Cache 8-78

Type 21: Nop .. 8-80

Type 22: Idle ... 8-81

Type 25: Cjump/Rframe ... 8-82

COMPUTATIONS REFERENCE

Compute Field .. 9-1

ALU Operations ... 9-3

ALU Fixed-Point Operations ... 9-3

ALU Floating-Point Operations ... 9-4

Rn = Rx + Ry .. 9-6

Rn = Rx – Ry .. 9-7

Contents

xvi ADSP-2136x SHARC Processor Programming Reference

Rn = Rx + Ry + CI .. 9-8

Rn = Rx – Ry + CI – 1 .. 9-9

Rn = (Rx + Ry)/2 .. 9-10

COMP(Rx, Ry) .. 9-11

COMPU(Rx, Ry) ... 9-12

Rn = Rx + CI .. 9-13

Rn = Rx + CI – 1 .. 9-14

Rn = Rx + 1 .. 9-15

Rn = Rx – 1 .. 9-16

Rn = –Rx .. 9-17

Rn = ABS Rx .. 9-18

Rn = PASS Rx .. 9-19

Rn = Rx AND Ry ... 9-20

Rn = Rx OR Ry .. 9-21

Rn = Rx XOR Ry .. 9-22

Rn = NOT Rx .. 9-23

Rn = MIN(Rx, Ry) ... 9-24

Rn = MAX(Rx, Ry) ... 9-25

Rn = CLIP Rx BY Ry .. 9-26

Fn = Fx + Fy ... 9-27

Fn = Fx – Fy ... 9-28

Fn = ABS (Fx + Fy) .. 9-29

Fn = ABS (Fx – Fy) .. 9-30

Fn = (Fx + Fy)/2 ... 9-31

ADSP-2136x SHARC Processor Programming Reference xvii

Contents

COMP(Fx, Fy) ... 9-32

Fn = –Fx ... 9-33

Fn = ABS Fx ... 9-34

Fn = PASS Fx .. 9-35

Fn = RND Fx ... 9-36

Fn = SCALB Fx BY Ry .. 9-37

Rn = MANT Fx .. 9-38

Rn = LOGB Fx ... 9-39

Rn = FIX Fx
Rn = TRUNC Fx
Rn = FIX Fx BY Ry
Rn = TRUNC Fx BY Ry ... 9-40

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx ... 9-42

Fn = RECIPS Fx ... 9-43

Fn = RSQRTS Fx .. 9-45

Fn = Fx COPYSIGN Fy .. 9-47

Fn = MIN(Fx, Fy) ... 9-48

Fn = MAX(Fx, Fy) .. 9-49

Fn = CLIP Fx BY Fy ... 9-50

Multiplier Operations ... 9-50

Multiplier Fixed-Point Operations ... 9-51

Multiplier Floating-Point Operations 9-52

Mod1 and Mod2 Modifiers .. 9-52

Contents

xviii ADSP-2136x SHARC Processor Programming Reference

Rn = Rx * Ry mod2
MRF = Rx * Ry mod2
MRB Rx * Ry mod2 .. 9-54

Rn = MRF + Rx * Ry mod2
Rn = MRB + Rx * Ry mod2
MRF = MRF + Rx * Ry mod2
MRB = MRB + Rx * Ry mod2 ... 9-55

Rn = MRF – Rx * Ry mod2
Rn = MRB – Rx * Ry mod2
MRF = MRF – Rx * Ry mod2
MRB = MRB – Rx * Ry mod2 ... 9-56

Rn = SAT MRF mod1
Rn = SAT MRB mod1
MRF = SAT MRF mod1
MRB = SAT MRB mod1 .. 9-57

Rn = RND MRF mod1
Rn = RND MRB mod1
MRF = RND MRF mod1
MRB = RND MRB mod1 .. 9-58

MRF = 0
MRB = 0 ... 9-59

MRxF/B = Rn/Rn = MRxF/B ... 9-60

Fn = Fx * Fy ... 9-62

Shifter Operations .. 9-62

Shifter Opcodes .. 9-62

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8> .. 9-64

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8> 9-65

ADSP-2136x SHARC Processor Programming Reference xix

Contents

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8> .. 9-66

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8> 9-67

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8> .. 9-68

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8> .. 9-69

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8> ... 9-70

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8> .. 9-71

BTST Rx BY Ry
BTST Rx BY <data8> ... 9-72

Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6> ... 9-73

Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6> 9-75

Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE) 9-77

Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) 9-79

Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6> ... 9-81

Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE) 9-83

Rn = EXP Rx .. 9-85

Rn = EXP Rx (EX) .. 9-86

Contents

xx ADSP-2136x SHARC Processor Programming Reference

Rn = LEFTZ Rx ... 9-87

Rn = LEFTO Rx ... 9-88

Rn = FPACK Fx ... 9-89

Fn = FUNPACK Rx ... 9-90

Multifunction Computations .. 9-91

Operand Constraints ... 9-91

Parallel Add and Subtract .. 9-93

Parallel Multiplier and ALU .. 9-95

Parallel Multiplier With Add and Subtract 9-98

INSTRUCTION SET QUICK REFERENCE

Chapter Overview .. A-1

Compute and Move/Modify Summary .. A-2

Program Flow Control Summary ... A-4

Immediate Move Summary ... A-5

Miscellaneous Operations Summary .. A-7

Register Types Summary ... A-9

Memory Addressing Summary .. A-13

Instruction Set Notation Summary .. A-14

Conditional Execution Codes Summary A-16

SISD/SIMD Conditional Testing Summary A-18

Instruction Opcode Acronym Summary A-19

Universal Register Codes ... A-23

ADSP-2136x Instruction Opcode Map A-28

ADSP-2136x SHARC Processor Programming Reference xxi

Contents

REGISTERS

Control and Status System Registers ... B-2

Mode Control 1 Register (MODE1) B-3

Mode Mask Register (MMASK) .. B-7

Mode Control 2 Register (MODE2) B-11

Arithmetic Status Registers (ASTATx and ASTATy) B-12

Sticky Status Registers (STKYx and STKYy) B-17

User-Defined Status Registers (USTATx) B-21

Processing Element Registers .. B-22

Data File Data Registers (Rx, Fx, Sx) B-22

Multiplier Results Registers (MRFx, MRBx) B-22

Program Memory Bus Exchange Register (PX) B-23

Program Sequencer Registers .. B-24

Flag Value Register (FLAGS) .. B-25

Program Counter Register (PC) .. B-30

Program Counter Stack Register (PCSTK) B-30

Program Counter Stack Pointer Register (PCSTKP) B-31

Fetch Address Register (FADDR) .. B-31

Decode Address Register (DADDR) B-32

Loop Address Stack Register (LADDR) B-32

Current Loop Counter Register (CURLCNTR) B-32

Loop Counter Register (LCNTR) ... B-33

Timer Period Register (TPERIOD) B-33

Timer Count Register (TCOUNT) B-33

Contents

xxii ADSP-2136x SHARC Processor Programming Reference

Data Address Generator Registers .. B-34

Index Registers (Ix) ... B-34

Modify Registers (Mx) .. B-34

Length and Base Registers (Lx, Bx) .. B-34

Timer Registers .. B-35

Timer Configuration Registers (TMxCTL) B-35

Timer Counter Registers (TMxCNT) B-36

Timer Period Registers (TMxPRD) .. B-36

Timer Width Register (TMxW) .. B-37

Timer Global Status and Control Register (TMSTAT) B-37

Power Management Registers .. B-38

Power Management Control Register (PMCTL) B-38

Revision ID Register (REVPID) .. B-42

I/O Processor Registers ... B-43

GLOSSARY

INDEX

ADSP-2136x SHARC Processor Programming Reference xxiii

PREFACE

Thank you for purchasing and developing systems using the ADSP-2136x
SHARC® processor from Analog Devices.

Purpose of This Manual
The ADSP-2136x SHARC Processor Programming Reference provides archi-
tectural and programming information about the ADSP-2136x SHARC
processor. The architectural descriptions cover the processor’s functional
blocks and buses, including features and processes that they support. The
programming information covers the Instruction Set and Compute opera-
tions. The companions to this manual are the ADSP-2136x SHARC
Processor Hardware Reference for the ADSP-21362/3/4/5/6 Processors and
the ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors. These manuals provide information on the
I/O capabilities and peripherals supported on these processors. For tim-
ing, electrical, and package specifications, see the processor specific data
sheet listed in “Related Documents” on page xxix.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices

Manual Contents

xxiv ADSP-2136x SHARC Processor Programming Reference

processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference manuals and data sheets) that
describe your target architecture.

Manual Contents
This manual provides detailed information about the ADSP-2136x pro-
cessor family in the following chapters:

• Chapter 1, “Introduction”
Provides an architectural overview of the ADSP-2136x processors.

• Chapter 2, “Processing Elements”
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units, and shifter. The chapter also discusses data formats, data
types, and register files.

• Chapter 3, “Program Sequencer”
Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, exceptions, and the IDLE instruction.

• Chapter 4, “Data Address Generators”
Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 5, “Memory”
Describes aspects of processor memory including internal memory,
address and data bus structure, and memory accesses.

ADSP-2136x SHARC Processor Programming Reference xxv

Preface

• Chapter 6, “JTAG Test Emulation Port”
Discusses the JTAG standard and how to use the ADSP-2136x
processors in a test environment. Includes boundary-scan architec-
ture, instruction and boundary registers, and breakpoint control
registers.

• Chapter 7 “Timer”
Describes the three general purpose timers that can be configured
in any of three modes: pulse width modulation, pulse width count
and capture, and external event watchdog modes.

• Chapter 8, “Instruction Set”
Provides reference information for the machine language opcode
for the processor.

• Chapter 9, “Computations Reference”
Describes each compute operation in detail, including its assembly
language syntax and opcode field. Compute operations execute in
the multiplier, the ALU, and the shifter.

• Appendix A, “Instruction Set Quick Reference”
The instruction set summary provides a syntax summary for each
instruction and includes a cross reference to each instruction’s ref-
erence page.

• Appendix B, “Registers”
Provides register and bit descriptions for all of the registers that are
used to control the operation of the ADSP-2136x processor core.

This programming reference is a companion document to the
ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21362/3/4/5/6 Processors and the ADSP-2136x SHARC Pro-
cessor Hardware Reference for the ADSP-21367/8/9 Processors.

What’s New in This Manual

xxvi ADSP-2136x SHARC Processor Programming Reference

What’s New in This Manual
This is revision 1.1 of the ADSP-2136x SHARC Processor Programming
Reference. The only changes for this revisions are corrections to cross references
(and links in the online version of the book).

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

ADSP-2136x SHARC Processor Programming Reference xxvii

Preface

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
[8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently supports the
following TigerSHARC families: ADSP-TS101 and ADSP-TS20x.

SHARC (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, and
ADSP-2136x.

Blackfin® (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF53x and ADSP-BF56x.

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

Product Information

xxviii ADSP-2136x SHARC Processor Programming Reference

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

ADSP-2136x SHARC Processor Programming Reference xxix

Preface

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

Related Documents
The following publications that describe the ADSP-2136x processors can
be ordered from any Analog Devices sales office:

• ADSP-21362 SHARC Processor Data Sheet

• ADSP-21363 SHARC Processor Data Sheet

• ADSP-21364 SHARC Processor Data Sheet

• ADSP-21365 SHARC Processor Data Sheet

• ADSP-21366 SHARC Processor Data Sheet

• ADSP-21367 SHARC Processor Preliminary Data Sheet

• ADSP-21368 SHARC Processor Preliminary Data Sheet

• ADSP-21369 SHARC Processor Preliminary Data Sheet

• ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21362/3/4/5/6 Processors

• ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors

ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

Product Information

xxx ADSP-2136x SHARC Processor Programming Reference

For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ User’s Guide

• VisualDSP++ C/C++ Compiler and Library Manual

• VisualDSP++ Assembler and Preprocessor Manual

• VisualDSP++ Linker and Utilities Manual

• VisualDSP++ Kernel (VDK) User’s Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

ADSP-2136x SHARC Processor Programming Reference xxxi

Preface

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder, and .PDF files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

Product Information

xxxii ADSP-2136x SHARC Processor Programming Reference

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technical_library

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir.

http://www.analog.com/processors/technical_library

ADSP-2136x SHARC Processor Programming Reference xxxiii

Preface

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Conventions

xxxiv ADSP-2136x SHARC Processor Programming Reference

Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the Visu-
alDSP++ environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative items in syntax descriptions appear within curly brackets and
separated by vertical bars; read the example as this or that. One or the
other is required.

[this | that] Optional items in syntax descriptions appear within brackets and separated
by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delimited
by commas and terminated with an ellipse; read the example as an optional
comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with let-
ter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product that
could lead to undesirable results or product damage. In the online version of
this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product that
could lead to conditions that are potentially hazardous for devices users. In
the online version of this book, the word Warning appears instead of this
symbol.

ADSP-2136x SHARC Processor Programming Reference xxxv

Preface

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Conventions

xxxvi ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference 1-1

1 INTRODUCTION

The ADSP-2136x processors are high performance 32-bit processors used
for medical imaging, communications, military, audio, test equipment,
3D graphics, speech recognition, motor control, imaging, and other appli-
cations. By adding on-chip SRAM, integrated I/O peripherals, and an
additional processing element for single-instruction, multiple-data
(SIMD) support, this processor builds on the ADSP-21000 family proces-
sor core to form a complete system-on-a-chip.

The ADSP-2136x processors are comprised of two distinct groups, the
ADSP-21362/3/4/5/6 processors (see Figure 1-1 on page 1-3 and
Table 1-1 on page 1-11), and the ADSP-21367/8/9 processors (see
Figure 1-2 on page 1-4 and Table 1-2 on page 1-12). The groups are dif-
ferentiated by, on-chip memories, peripheral choices, packaging, and
operating speeds. However, the core processor operates in the same way in
both groups so this manual applies to both groups. Where differences exist
(such as external memory interfacing) they will be noted.

For specific information on the peripherals associated with each group,
two manuals are available: the ADSP-2136x SHARC Processor Hardware
Reference for the ADSP-21362/3/4/5/6 Processors and the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21367/8/9 Processors.

ADSP-2136x Design Advantages
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios.
Because floating-point math reduces the need for scaling and probability

ADSP-2136x Design Advantages

1-2 ADSP-2136x SHARC Processor Programming Reference

of overflow, using a floating-point processor can ease algorithm and soft-
ware development. The extent to which this is true depends on the
floating-point processor’s architecture. Consistency with IEEE worksta-
tion simulations and the elimination of scaling are clearly two ease-of-use
advantages. High level language programmability, large address spaces,
and wide dynamic range allow system development time to be spent on
algorithms and signal processing concerns, rather than assembly language
coding, code paging, and error handling. The ADSP-2136x processors are
highly integrated, 32-bit floating-point processors that provide many of
these design advantages.

The SHARC processor architecture balances a high performance processor
core with high performance program memory (PM), data memory (DM),
and input/output (I/O) buses. In the core, every instruction can execute in
a single cycle. The buses and instruction cache provide rapid, unimpeded
data flow to the core to maintain the execution rate.

Figure 1-1 shows a detailed block diagram of the processor, illustrating the
following architectural features:

• Two processing elements (PEx and PEy), each containing 32-bit
IEEE floating-point computation units—multiplier, arithmetic
logic unit (ALU), shifter, and data register file

• Program sequencer with related instruction cache, interval timer,
and data address generators (DAG1 and DAG2)

• Up to 3M bit on-chip SRAM

• IOP with integrated direct memory access (DMA) controller, serial
peripheral interface (SPI) compatible port, and serial ports
(SPORTs) for point-to-point multiprocessor communications.

• JTAG test access port for emulation

ADSP-2136x SHARC Processor Programming Reference 1-3

Introduction

• External port for interfacing to off-chip SDRAM
(ADSP-21367/8/9 processors) and configuring a shared memory
system with up to four other ADSP-21368 SHARC processors

• Parallel port for interfacing to off-chip memory and peripherals
(ADSP-21362/3/4/5/6 processors)

Figure 1-1 also shows the three on-chip buses of the ADSP-2136x proces-
sors: the PM bus, DM bus, and I/O bus. The PM bus provides access to
either instructions or data. During a single cycle, these buses let the pro-
cessor access two data operands from memory, access an instruction (from
the cache), and perform a DMA transfer.

Figure 1-1. ADSP-21362/3/4/5/6 SHARC Processor Block Diagram

ADDR DATA

IOD

ADDR DATA

IOA

ADDR DATA

IOA

SRAM
1 MBIT ROM

2 MBIT

SRAM
0.5 MBIT

BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3

ADDR DATA

IOA

IOP REGISTERS
(MEMORY MAPPED)

I/O PROCESSOR
AND PERIPHERALS

6
JTAG TEST & EMULATION

32PM ADDRESS BUS

DM ADDRESS BUS 32

PM DATA BUS

DM DATA BUS

64

64

PX REGISTER
PROCESSING

ELEMENT
(PEY)

PROCESSING
ELEMENT

(PEX)

TIMER
INSTRUCTION

CACHE
32 X 48-BIT

DAG1
8X4X32

DAG2
8X4X32

CORE PROCESSOR

PROGRAM
SEQUENCER

SRAM
1 MBIT ROM

2 MBIT

SIGNAL
ROUTING

UNIT

SRAM
0.5 MBIT

4 BLOCKS OF ON-CHIP MEMORY

IOD IOA IOD IOD

SPI
SPORTS

IDP
PCG

TIMERS
SRC

SPDIF
DTCP

ADSP-2136x Design Advantages

1-4 ADSP-2136x SHARC Processor Programming Reference

The ADSP-2136x processors address the five central requirements for sig-
nal processing:

1. Fast, flexible arithmetic. The ADSP-21000 family processors exe-
cute all instructions in a single cycle. They provide fast cycle times
and a complete set of arithmetic operations. The processor is IEEE
floating-point compatible and allows either interrupt on arithmetic
exception or latched status exception handling.

2. Unconstrained data flow. The ADSP-2136x processors have a
Super Harvard Architecture combined with a ten-port data register
file. For more information, see “Data Register File” on page 2-37.
In every cycle, the processor can write or read two operands to or

Figure 1-2. ADSP-21367/8/9 SHARC Processor Block Diagram

SPI PORT (2)

TIMERS (3)

TWO WIRE
INTERFACE

UART (2)

D
P

IR
O

U
T

IN
G

U
N

IT

DIGITAL PERIPHERAL INTERFACE

GPIO FLAGS/
IRQ/TIMEXP

4
SERIAL PORTS (8)

INPUT DATA PORT/
PDAP

D
A

IR
O

U
T

IN
G

U
N

ITSPDIF (RX/TX)

DIGITAL AUDIO INTERFACE

IOD(32)

ADDR DATA

IOA(24)

4 BLOCKS OF
ON-CHIP MEMORY

2M BIT RAM,
6M BIT ROM (*Reserved)

P M DATA BUS

DM DATA BUS

32PM ADDRES S BUS

DM ADDRESS BUS

64

PX REGISTERPROCESSING
ELEMENT

(PEY)

PROCESSING
ELEMENT

(PEX)

TIMER
INSTRUCTION

CACHE
32 X 48-BIT

DAG1
8X4X32

CORE PROCESSOR

PROGRAM
SEQUENCER

DMA
CONTROLLER

34 CHANNELS

S

MEMORY-TO-
MEMORY DMA (2)

IOP REGISTER (MEMORY MAPPED)
CONTROL, STATUS, & DATA BUFFERS

JTAG TEST & EMULATION

DAG2
8X4X32

I/O PROCESSOR

DAI PINS DPI PINS

64

32

1420

SRC (8 CHANNELS)

PRECISION CLOCK
GENERATORS (4)

*THE ADSP-21368 PROCESSOR INCLUDES A CUSTOMER-DEFINABLE ROM BLOCK.
PLEASE CONTACT YOUR ANALOG DEVICES SALES REPRESENTATIVE FOR ADDITIONAL DETAILS

24

18

SDRAM
CONTROLLER

ADDRESS

CONTROL

3

8

ASYNCHRONOUS
MEMORY

INTERFACE

SHARED MEMORY
INTERFACE

8

EXTERNAL PORT

C
O

N
T

R
O

L
P

IN
S

PWM
32

DATA

FLAGS4-15

ADSP-2136x SHARC Processor Programming Reference 1-5

Introduction

from the register file, supply two operands to the ALU, supply two
operands to the multiplier, and receive three results from the ALU
and multiplier. The processor’s 48-bit orthogonal instruction word
supports parallel data transfers and arithmetic operations in the
same instruction.

3. 40-Bit extended precision. The processor handles 32-bit IEEE
floating-point format, 32-bit integer and fractional formats
(twos-complement and unsigned), and extended-precision 40-bit
floating-point format. The processors carry extended precision
throughout their computation units, limiting intermediate data
truncation errors (up to 80 bits of precision are maintained during
multiply-accumulate operations).

4. Dual address generators. The processor has two data address gen-
erators (DAGs) that provide immediate or indirect (pre- and
post-modify) addressing. Modulus, bit-reverse, and broadcast oper-
ations are supported with no constraints on data buffer placement.

5. Efficient program sequencing. In addition to zero-overhead loops,
the processor supports single-cycle setup and exit for loops. Loops
are both nestable (six levels in hardware) and interruptable. The
processors support both delayed and non-delayed branches.

ADSP-2136x Architectural Overview
The ADSP-2136x processors form a complete system-on-a-chip, integrat-
ing a large, high speed SRAM and I/O peripherals supported by a
dedicated I/O bus. The following sections summarize the features of each
functional block in the ADSP-2136x architecture, which appears in
Figure 1-1.

ADSP-2136x Architectural Overview

1-6 ADSP-2136x SHARC Processor Programming Reference

Processor Core
The processor core consists of two processing elements (each with three
computation units and data register file), a program sequencer, two
DAGs, a timer, and an instruction cache. All processing occurs in the pro-
cessor core.

Processing Elements

The processor core contains two processing elements: PEx and PEy. Each
element contains a data register file and three independent computation
units: an arithmetic logic unit (ALU), a multiplier with an 80-bit
fixed-point accumulator, and a shifter. For meeting a wide variety of pro-
cessing needs, the computation units process data in three formats: 32-bit
fixed-point, 32-bit floating-point, and 40-bit floating-point. The float-
ing-point operations are single-precision IEEE-compatible. The 32-bit
floating-point format is the standard IEEE format, whereas the 40-bit
extended-precision format has eight additional least significant bits (LSBs)
of mantissa for greater accuracy.

The ALU performs a set of arithmetic and logic operations on both
fixed-point and floating-point formats. The multiplier performs float-
ing-point or fixed-point multiplication and fixed-point
multiply/accumulate or multiply/cumulative-subtract operations. The
shifter performs logical and arithmetic shifts, bit manipulation, bit-wise
field deposit and extraction, and exponent derivation operations on 32-bit
operands. These computation units complete all operations in a single
cycle; there is no computation pipeline. The output of any unit may serve
as the input of any unit on the next cycle. All units are connected in paral-
lel, rather than serially. In a multifunction computation, the ALU and
multiplier perform independent, simultaneous operations.

Each processing element has a general-purpose data register file that trans-
fers data between the computation units and the data buses and stores
intermediate results. A register file has two sets (primary and secondary) of

ADSP-2136x SHARC Processor Programming Reference 1-7

Introduction

16 general-purpose registers each for fast context switching. All of the reg-
isters are 40 bits wide. The register file, combined with the core
processor’s Super Harvard Architecture, allows unconstrained data flow
between computation units and internal memory.

Primary processing element (PEx). PEx processes all computational
instructions whether the processor is in single-instruction, single-data
(SISD) or single-instruction, multiple-data (SIMD) mode. This element
corresponds to the computational units and register file in previous
ADSP-21000 family processors.

Secondary processing element (PEy). PEy processes each computational
instruction in lock-step with PEx, but only processes these instructions
when the processor is in SIMD mode. Because many operations are influ-
enced by this mode, more information on SIMD is available in multiple
locations:

• For information on PEy operations, see “Processing Elements” on
page 2-1.

• For information on data addressing in SIMD mode, see “Address-
ing in SISD and SIMD Modes” on page 4-20.

• For information on data accesses in SIMD mode, see “SISD,
SIMD, and Broadcast Load Modes” on page 5-37.

• For information on SIMD programming, see “Instruction Set” in
Chapter 8, Instruction Set, and “Computations Reference” in
Chapter 9, Computations Reference.

Program Sequence Control

Internal controls for program execution come from four functional blocks:
program sequencer, data address generators, core timer, and instruction
cache. Two dedicated address generators and a program sequencer supply
addresses for memory accesses. Together the sequencer and data address
generators allow computational operations to execute with maximum

ADSP-2136x Architectural Overview

1-8 ADSP-2136x SHARC Processor Programming Reference

efficiency since the computation units can be devoted exclusively to pro-
cessing data. With its instruction cache, the ADSP-2136x processors can
simultaneously fetch an instruction from the cache and access two data
operands from memory. The DAGs also provide built-in support for
zero-overhead circular buffering.

Program sequencer. The program sequencer supplies instruction
addresses to program memory. It controls loop iterations and evaluates
conditional instructions. With an internal loop counter and loop stack,
the processors execute looped code with zero overhead. No explicit jump
instructions are required to loop or to decrement and test the counter. To
achieve a high execution rate while maintaining a simple programming
model, the processor employs a five stage pipeline to process instructions
— fetch1, fetch2, decode, address and execute. For more information, see
“Instruction Pipeline” on page 3-2.

Data address generators. The DAGs provide memory addresses when data
is transferred between memory and registers. Dual data address generators
enable the processor to output simultaneous addresses for two operand
reads or writes. DAG1 supplies 32-bit addresses for accesses using the DM
bus. DAG2 supplies 32-bit addresses for memory accesses over the PM
bus.

Each DAG keeps track of up to eight address pointers, eight address mod-
ifiers, and for circular buffering eight base-address registers and eight
buffer-length registers. A pointer used for indirect addressing can be mod-
ified by a value in a specified register, either before (pre-modify) or after
(post-modify) the access. A length value may be associated with each
pointer to perform automatic modulo addressing for circular data buffers.
The circular buffers can be located at arbitrary boundaries in memory.
Each DAG register has a secondary register that can be activated for fast
context switching.

ADSP-2136x SHARC Processor Programming Reference 1-9

Introduction

Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing They are also com-
monly used in digital filters and Fourier transforms. The DAGs
automatically handle address pointer wraparound, reducing overhead,
increasing performance, and simplifying implementation.

Interrupts. The ADSP-2136x processors have three external hardware
interrupts. The processor also provides three general-purpose interrupts,
and a special interrupt for reset. The processor has internally-generated
interrupts for the timer, DMA controller operations, circular buffer over-
flow, stack overflows, arithmetic exceptions, and user-defined software
interrupts.

For the general-purpose interrupts and the internal timer interrupt, the
processor automatically stacks the arithmetic status (ASTATx) register and
mode (MODE1) registers in parallel with the interrupt servicing, allowing 15
nesting levels of very fast service for these interrupts.

Context switch. Many of the processor’s registers have secondary registers
that can be activated during interrupt servicing for a fast context switch.
The data registers in the register file, the DAG registers, and the multiplier
result register all have secondary registers. The primary registers are active
at reset, while the secondary registers are activated by control bits in a
mode control register.

Timer. The core’s programmable interval timer provides periodic inter-
rupt generation. When enabled, the timer decrements a 32-bit count
register every cycle. When this count register reaches zero, the
ADSP-2136x processors generate an interrupt and asserts their timer
expired output. The count register is automatically reloaded from a 32-bit
period register and the countdown resumes immediately.

Instruction cache. The program sequencer includes a 32-word instruction
cache that effectively provides three-bus operation for fetching an instruc-
tion and two data values. The cache is selective; only instructions whose
fetches conflict with data accesses using the PM bus are cached. This

ADSP-2136x Architectural Overview

1-10 ADSP-2136x SHARC Processor Programming Reference

caching allows full speed execution of core, looped operations such as dig-
ital filter multiply-accumulates, and FFT butterfly processing. For more
information on the cache, refer to “Using the Cache” on page 3-8.

Processor Internal Buses

The processor core has six buses: PM address, PM data, DM address, DM
data, I/O address, and I/O data. The PM bus is used to fetch instructions
from memory, but may also be used to fetch data. The DM bus can only
be used to fetch data from memory. The I/O bus is used solely by the IOP
to facilitate DMA transfers. In conjunction with the cache, this Super
Harvard Architecture allows the core to fetch an instruction and two
pieces of data in the same cycle that a data word is moved between mem-
ory and a peripheral. This architecture allows dual data fetches, when the
instruction is supplied by the cache.

Bus capacities. The PM and DM address buses are both 32 bits wide,
while the PM and DM data buses are both 64 bits wide.

These two buses provide a path for the contents of any register in the pro-
cessor to be transferred to any other register or to any data memory
location in a single cycle. When fetching data over the PM or DM bus, the
address comes from one of two sources: an absolute value specified in the
instruction (direct addressing) or the output of a data address generator
(indirect addressing). These two buses share the same port of the memory.

Each memory block also has a dedicated I/O address bus and I/O data bus
to let the I/O processor access internal memory for DMA without delay-
ing the processor core (in the absence of memory block conflict). The I/O
address bus is 18 bits wide, and the I/O data bus is 32 bits wide.

Data transfers. Nearly every register in the processor core is classified as a
universal register (Ureg). Instructions allow the transfer of data between
any two universal registers or between a universal register and memory.
This support includes transfers between control registers, status registers,
and data registers in the register file. The PM bus connect (PX) registers

ADSP-2136x SHARC Processor Programming Reference 1-11

Introduction

permit data to be passed between the 64-bit PM data bus and the 64-bit
DM data bus, or between the 40-bit register file and the PM data bus.
These registers contain hardware to handle the data width difference. For
more information, see “Processing Element Registers” on page B-22.

Processor Peripherals
The term processor peripherals refers to the multiple on-chip functional
blocks used to communicate with off-chip devices. The
ADSP-21362/3/4/5/6 peripherals include the JTAG, parallel, serial, SPI
ports, DAI components (PCG, timers, and IDP), and any external devices
that connect to the processor. The ADSP-21367/8/9 processors peripher-
als include the JTAG, external, serial, DAI components (PCG, Timers,
and IDP), DPI components (two UARTs, two SPIs, three timers, and a
two wire interface port) and any external devices that connect to the pro-
cessor. For complete information on using peripherals, see the
ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21362/3/4/5/6 Processors or the ADSP-2136x SHARC Processor
Hardware Reference for the ADSP-21367/8/9 Processors.

Table 1-1 and Table 1-2 provide details on the various options available
from each processor group.

Table 1-1. ADSP-21362/3/4/5/6 SHARC Processor Features

Feature ADSP-21362 ADSP-21363 ADSP-21364 ADSP-213651 ADSP-21366

RAM 3M bit 3M bit 3M bit 3M bit 3M bit

ROM 4M bit 4M bit 4M bit 4M bit 4M bit

Audio Decoders
in ROM2

No No No Yes Yes

Pulse Width
Modulation

Yes Yes Yes Yes Yes

S/PDIF Yes No Yes Yes Yes

ADSP-2136x Architectural Overview

1-12 ADSP-2136x SHARC Processor Programming Reference

SRC Perfor-
mance

128db No SRC 140dB 128dB 128dB

Package Option3 136 Ball
BGA
144 Lead
LQFP

136 Ball
BGA
144 Lead
LQFP

136 Ball
BGA
144 Lead
LQFP

136 Ball BGA
144 Lead
LQFP

136 Ball
BGA
144 Lead
LQFP

Processor Speed 333 MHz 333 MHz 333 MHz 333 MHz 333 MHz

1 The ADSP-21365 provides the Digital Transmission Content Protection protocol, a proprietary
security protocol. Contact your Analog Devices sales office for more information.

2 Audio decoding algorithms include PCM, Dolby Digital EX, Dolby Prologic IIx, DTS 96/24,
Neo:6, DTS ES, MPEG2 AAC, MP3, and functions like bass management, delay, speaker equal-
ization, graphic equalization, and more. Decoder/post-processor algorithm combination support
vary, depending upon the chip version and the system configurations. Please visit www.ana-
log.com/SHARC for complete information.

3 Analog Devices offers these packages in lead (Pb) free versions.

Table 1-2. ADSP-21367/8/9 SHARC Processor Features

Feature ADSP-21367 ADSP-21368 ADSP-21369

RAM 2M bit 2M bit 2M bit

ROM 6M bit 6M bit1 6M bit1

Audio Decoders in ROM2 Yes No No

Pulse Width Modulation Yes Yes Yes

S/PDIF Yes Yes Yes

Shared Memory No Yes No

SRC Performance 128dB 140dB 128dB

Package Option3 256 Ball SBGA
208 Lead MQFP

256 Ball BGA 256 Ball BGA
208 Lead MQFP

Processor Speed 400 MHz 400 MHz 400 MHz

1 The ADSP-21368/21369 processors includes a customer-definable ROM block. Please contact
your Analog Devices sales representative for additional details.

Table 1-1. ADSP-21362/3/4/5/6 SHARC Processor Features (Cont’d)

Feature ADSP-21362 ADSP-21363 ADSP-21364 ADSP-213651 ADSP-21366

ADSP-2136x SHARC Processor Programming Reference 1-13

Introduction

Internal Memory (SRAM)

The individual ADSP-2136x products contain varying amounts of mem-
ory. For example, the ADSP-21362/3/4/5/6 processors provide 3M bits of
internal SRAM and 4M bits of internal ROM, which is organized into
four separate blocks. The memory and separate on-chip buses allow two
data transfers from the core and one from I/O, all in a single cycle.

All of the memory can be accessed as 16-, 32-, 48-, or 64-bit words. On
the ADSP-2136x processors, the memory can be configured as a maxi-
mum of 96K words of 32-bit data, 192K words of 16-bit data, 64K words
of 48-bit instructions (and 40-bit data), or combinations of different word
sizes up to 3.0M bit. For specific memory configurations, see the product
model specific data sheet.

The processor also supports a 16-bit floating-point storage format, which
effectively doubles the amount of data that may be stored on chip. Con-
version between the 32-bit floating-point and 16-bit floating-point
formats completes in a single instruction.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data (using the DM bus
for transfers) and the other block stores instructions and data (using the
PM bus for transfers). Using the DM and PM buses in this way (with one
dedicated to each memory block) assures single-cycle execution with two
data transfers. In this case, the instruction must be available in the cache.
The processor also maintains single-cycle execution when one of the data
operands is transferred to or from off chip, using the processor’s parallel
port.

2 Audio decoding algorithms include PCM, Dolby Digital EX, PCM, Dolby Digital EX, Dolby
Prologic IIx, DTS 96/24, Neo:6, DTS ES, MPEG2 AAC, MPEG2 2channel, MP3, and func-
tions like bass management, delay, speaker equalization, graphic equalization, and more. Decod-
er/post-processor algorithm combination support vary depending upon the chip version and the
system configurations. Please visit www.analog.com/SHARC for complete information.

3 Analog Devices offers these packages in lead (Pb) free versions.

ADSP-2136x Architectural Overview

1-14 ADSP-2136x SHARC Processor Programming Reference

Timers

In addition to the core’s programmable interval timer, the ADSP-2136x
processors have three programmable interval timers that generate periodic
interrupts. Each timer can be independently set to operate in one of three
modes:

• Pulse waveform generation mode

• Pulse width count/capture mode

• External event watchdog mode

Each timer has one bidirectional pin and four registers that implement its
mode of operation. These registers are a 7-bit configuration register, a
32-bit count register, a 32-bit period register, and a 32-bit pulse width
register. A single status register supports all three timers. A bit in each
timer’s configuration register enables or disables the corresponding timer
independently of the others.

JTAG Port

The JTAG port supports the IEEE standard 1149.1 Joint Test Action
Group (JTAG) standard for system test. This standard defines a method
for serially scanning the I/O status of each component in a system. Emula-
tors use the JTAG port to monitor and control the processor during
emulation. Emulators using this port provide full speed emulation with
access to inspect and modify memory, registers, and processor stacks.
JTAG-based emulation is non-intrusive and does not effect target system
loading or timing.

Rom Based Security

For those devices with application code in the on-chip ROM, an optional
ROM security feature is included. This feature provides hardware support
for securing user software code by preventing unauthorized reading from
the enabled code. The processor does not boot-load any external code,

ADSP-2136x SHARC Processor Programming Reference 1-15

Introduction

executing exclusively from internal ROM. The processor also is not freely
accessible via the JTAG port. Instead a 64-bit key is assigned to the user.
This key must be scanned in through the JTAG or Test Access Port. The
device ignores a wrong key. Emulation features and external boot modes
are only available after the correct key is scanned.

Development Tools
The ADSP-2136x SHARC processors are supported by VisualDSP++, an
easy to use Integrated Development and Debugging Environment
(IDDE). VisualDSP++ allows you to manage projects from start to finish
from within a single, integrated interface. Because the project develop-
ment and debug environments are integrated, you can move easily
between editing, building, and debugging activities.

Differences From Previous SHARC
Processors

This section identifies differences between the ADSP-2136x processors
and previous SHARC processors: ADSP-21161, ADSP-21160,
ADSP-21060, ADSP-21061, ADSP-21062, and ADSP-21065L. Like the
ADSP-2116x family, the ADSP-2136x family is based on the original
ADSP-2106x SHARC family. The ADSP-2136x preserves much of the
ADSP-2106x architecture and is code compatible to the ADSP-21160,
while extending performance and functionality. For background informa-
tion on SHARC and the ADSP-2106x Family processors, see the
ADSP-2106x SHARC User’s Manual.

Differences From Previous SHARC Processors

1-16 ADSP-2136x SHARC Processor Programming Reference

Processor Core Enhancements
Computational bandwidth on the ADSP-2136x processors is significantly
greater than that on the ADSP-2106x processors. The increase comes
from raising the operational frequency and adding another processing ele-
ment: ALU, shifter, multiplier, and register file. The new processing
element lets the processor process multiple data streams in parallel (SIMD
mode). The ADSP-2136x processors operate at up to 400 MHz using a
five stage pipeline.

The program sequencer has several enhancements: new interrupt vector
table definitions, SIMD mode stack and conditional execution model, and
instruction decodes associated with new instructions. Interrupt vectors
have been added that detect illegal memory accesses. Also, mode stack and
mode mask support have been added to improve context switch time.

The data address generators are improved from previous architectures in
that DAG2 (for the PM bus) has the same addressing capability as DAG1
(for the DM bus). The DAG registers move 64 bits per cycle. Addition-
ally, the DAGs support the new memory map and long word transfer
capability. Circular buffering on the ADSP-2136x processors can be
quickly disabled on interrupts and restored on the return. Data “broad-
cast”, from one memory location to both data register files, is determined
by appropriate index register usage.

Processor Internal Bus Enhancements
The PM, DM, and I/O data buses have increased from 32 bits on the
ADSP-2106x processors to 64 bits. Additional multiplexing and control
logic enable 16-, 32-, or 64-bit wide moves between both register files and
memory. The ADSP-2136x processors are capable of broadcasting a single
memory location to each of the register files in parallel. Also, the
ADSP-2136x processors permit register contents to be exchanged between
the two processing elements’ register files in a single cycle.

ADSP-2136x SHARC Processor Programming Reference 1-17

Introduction

Memory Organization Enhancements
The ADSP-2136x processors memory maps differ from the memory map
of the ADSP-2106x processor. The system memory map on each processor
group supports double-word transfers each cycle, reflects extended inter-
nal memory capacity for derivative designs, and works with an updated
control register for SIMD support. The ADSP-2136x processor family
provides enough on-chip memory for several audio decoders.

JTAG Port Enhancements
The JTAG port differs from the JTAG port of the ADSP-2106x proces-
sors. The ADSP-2136x processors offer ROM-based security. These
security features prevent piracy of codes and algorithms and prohibit
inspection of on-chip memory via the emulator or buses. The JTAG port
uses program controls to limit access to sensitive code in memory. An
assigned 64-bit key must be used to access protected memory regions.

The background telemetry channel (BTC) allows the emulator to feed
new data to the processor. It also gets updates from the processor in real
time. By using this function (that operates in the background), program-
mers can read and write data to a set of memory-mapped buffers that are
accessible by the emulator while the core is running.

Instruction Set Enhancements
The ADSP-2136x processors provide source code compatibility with the
previous SHARC processor family members, to the application assembly
source code level. All instructions, control registers, and system resources
available in the ADSP-2106x core programming model are also available

Differences From Previous SHARC Processors

1-18 ADSP-2136x SHARC Processor Programming Reference

in the ADSP-2136x processors. Instructions, control registers, or other
facilities, required to support the new feature set of the ADSP-2136x core
include:

• Code compatibility with the ADSP-21160 SIMD core

• Supersets of the ADSP-2106x programming model

• Reserved facilities in the ADSP-2106x programming model

• Symbol name changes from the ADSP-2106x and ADSP-2136x
processor programming models

These name changes can be managed through reassembly by using the
ADSP-2136x development tools to apply the ADSP-2136x symbol defini-
tions header file and linker description file. While these changes have no
direct impact on existing core applications, system and I/O processor ini-
tialization code and control code do require modifications.

Although the porting of source code written for the ADSP-2106x family
to the ADSP-2136x has been simplified, code changes are required to take
full advantage of the new ADSP-2136x processor features. For more infor-
mation, see “Instruction Set” in Chapter 8, Instruction Set, and
“Computations Reference” in Chapter 9, Computations Reference.

ADSP-2136x SHARC Processor Programming Reference 2-1

2 PROCESSING ELEMENTS

The processor’s processing elements (PEx and PEy) perform numeric pro-
cessing for processor algorithms. Each processing element contains a data
register file and three computation units—an arithmetic/logic unit (ALU),
a multiplier, and a shifter. Computational instructions for these elements
include both fixed-point and floating-point operations, and each compu-
tational instruction executes in a single cycle.

The computational units in a processing element handle different types of
operations. The ALU performs arithmetic and logic operations on
fixed-point and floating-point data. The multiplier performs float-
ing-point and fixed-point multiplication and executes fixed-point
multiply/add and multiply/subtract operations. The shifter computes logi-
cal shifts, arithmetic shifts, bit manipulation, field deposit, and field
extraction operations on 32-bit operands. The shifter can also derive
exponents.

Data flow paths through the computational units are arranged in parallel,
as shown in Figure 2-1. The output of any computational unit may serve
as the input of any computational unit on the next instruction cycle. Data
moving in and out of the computational units goes through a 10-port reg-
ister file, consisting of 16 primary registers and 16 alternate registers. Two
ports on the register file connect to the PM and DM data buses, allowing
data transfer between the computational units and memory (and anything
else) connected to these buses.

Numeric Formats

2-2 ADSP-2136x SHARC Processor Programming Reference

The processor’s assembly language provides access to the data register files
in both processing elements. The syntax allows programs to move data to
and from these registers, specify a computation’s data format and provide
naming conventions for the registers, all at the same time. For information
on the data register names, see “Data Register File” on page 2-37.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
First, a description of the MODE1 register shows how to set rounding, data
format, and other modes for the processing elements. The dashed box
indicates which components can be controlled by the MODE1 register. Next,
an examination of each computational unit provides details on operation
and a summary of computational instructions. Outside the computational
units, details on register files and data buses identify how to flow data for
computations. Finally, details on the processor’s advanced parallelism
reveal how to take advantage of multifunction instructions and sin-
gle-instruction, multiple-data (SIMD) mode.

Numeric Formats
The processor supports the 32-bit single-precision floating-point data for-
mat defined in the IEEE Standard 754/854. In addition, the processor
supports an extended-precision version of the same format with eight
additional bits in the mantissa (40 bits total). The processor also supports
32-bit fixed-point formats—fractional and integer—which can be signed
(two’s-complement) or unsigned.

IEEE Single-Precision Floating-Point Data Format
The IEEE Standard 754/854 specifies a 32-bit single-precision float-
ing-point format, shown in Figure 2-2. A number in this format consists
of a sign bit(s), a 24-bit significand, and an 8-bit unsigned-magnitude
exponent (e).

ADSP-2136x SHARC Processor Programming Reference 2-3

Processing Elements

For normalized numbers, the significand consists of a 23-bit fraction, f
and a “hidden” bit of 1 that is implicitly presumed to precede f22 in the
significand. The binary point is presumed to lie between this hidden bit
and f22. The least significant bit (LSB) of the fraction is f0; the LSB of the
exponent is e0.

The hidden bit effectively increases the precision of the floating-point sig-
nificand to 24 bits from the 23 bits actually stored in the data format. It
also ensures that the significand of any number in the IEEE normalized
number format is always greater than or equal to one and less than two.

Figure 2-1. Computational Block

REGISTER FILE
(16 x 40-BIT)

R0
R1
R2
R3

R4
R5
R6
R7

R12
R13
R14
R15

R8
R9
R10
R11

MULTIPLIER SHIFTER ALU

MRF2 MRF0MRF1

DM DATA BUS

PM DATA BUS

ASTATx STKYx

MODE1

TO PROGRAM SEQUENCER

X Y Z XY XY

Numeric Formats

2-4 ADSP-2136x SHARC Processor Programming Reference

The unsigned exponent, e, can range between 1 ≤ e ≤ 254 for normal
numbers in single-precision format. This exponent is biased by
+127 (254, 2). To calculate the true unbiased exponent, subtract 127
from e.

The IEEE Standard also provides several special data types in the sin-
gle-precision floating-point format:

• An exponent value of 255 (all ones) with a non-zero fraction is a
not-a-number (NAN). NANs are usually used as flags for data flow
control, for the values of uninitialized variables, and for the results
of invalid operations such as 0 * ∞.

• Infinity is represented as an exponent of 255 and a zero fraction.
Note that because the fraction is signed, both positive and negative
infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with
infinity, both positive zero and negative zero can be represented.

The IEEE single-precision floating-point data types supported by the pro-
cessor and their interpretations are summarized in Table 2-1.

Figure 2-2. IEEE 32-Bit Single-Precision Floating-Point Format

s e0

31 30 23 22 0

1 . f22 f0e7 • • •

HIDDEN BIT BINARY POINT

• • •

ADSP-2136x SHARC Processor Programming Reference 2-5

Processing Elements

Extended-Precision Floating-Point Format
The extended-precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the IEEE standard format but with a 32-bit sig-
nificand. This format is shown in Figure 2-3. In all other respects, the
extended-precision floating-point format is the same as the IEEE standard
format.

Table 2-1. IEEE Single-Precision Floating-Point Data Types

Type Exponent Fraction Value

NAN 255 Non-zero Undefined

Infinity 255 0 (–1)s Infinity

Normal 1 ≤ e ≤ 254 Any (–1)s (1.f22-0) 2e–127

Zero 0 0 (–1)s Zero

Figure 2-3. 40-Bit Extended-Precision Floating-Point Format

s e0

39 38 31 30 0

1 . f30 f0e7 • • • • • •

HIDDEN BIT BINARY POINT

Numeric Formats

2-6 ADSP-2136x SHARC Processor Programming Reference

Short Word Floating-Point Format
The processor supports a 16-bit floating-point data type and provides con-
version instructions for it. The short float data format has an 11-bit
mantissa with a 4-bit exponent plus sign bit, as shown in Figure 2-4. The
16-bit floating-point numbers reside in the lower 16 bits of the 32-bit
floating-point field.

Packing for Floating-Point Data
Two shifter instructions, FPACK and FUNPACK, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE float-
ing-point number to a 16-bit floating-point number. The FUNPACK
instruction converts 16-bit floating-point numbers back to 32-bit IEEE
floating-point. Each instruction executes in a single cycle. The results of
the FPACK and FUNPACK operations appear in Table 2-2 and Table 2-3.

Figure 2-4. 16-Bit Floating-Point Format

s e0

15 14 11 10 0

1 . f10 f0e3 • • • • • •

HIDDEN BIT BINARY POINT

ADSP-2136x SHARC Processor Programming Reference 2-7

Processing Elements

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including
hidden 1) is right-shifted the appropriate amount. The packed result is a
denormal, which can be unpacked into a normal IEEE floating-point
number.

Table 2-2. FPACK Operations

Condition Result

135 < exp Largest magnitude representation.

120 < exp ≤ 135 Exponent is most significant bit (MSB) of source exponent concatenated
with the three least significant bits (LSBs) of source exponent. The
packed fraction is the rounded upper 11 bits of the source fraction.

109 < exp ≤ 120 Exponent = 0. Packed fraction is the upper bits (source exponent – 110)
of the source fraction prefixed by zeros and the “hidden” one. The packed
fraction is rounded.

exp < 110 Packed word is all zeros.

exp = source exponent
sign bit remains the same in all cases

Table 2-3. FUNPACK Operations

Condition Result

0 < exp ≤ 15 Exponent is the 3 LSBs of the source exponent prefixed by the MSB of
the source exponent and four copies of the complement of the MSB.
The unpacked fraction is the source fraction with 12 zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the
source fraction. The unpacked fraction is the remainder of the source
fraction with zeros appended to pad it and the “hidden” one stripped
away.

exp = source exponent
sign bit remains the same in all cases

Numeric Formats

2-8 ADSP-2136x SHARC Processor Programming Reference

During the FPACK operation, an overflow sets the SV condition and
non-overflow clears it. During the FUNPACK operation, the SV condition is
cleared. The SZ and SS conditions are cleared by both instructions.

Fixed-Point Formats
The processor supports two 32-bit fixed-point formats—fractional and
integer. In both formats, numbers can be signed (two’s-complement) or
unsigned. The four possible combinations are shown in Figure 2-5. In the
fractional format, there is an implied binary point to the left of the most
significant magnitude bit. In integer format, the binary point is under-
stood to be to the right of the LSB. Note that the sign bit is negatively
weighted in a two’s-complement format.

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit posi-
tion. Normally bit 63 and bit 62 are identical when both operands are
signed. (The only exception is full-scale negative multiplied by itself.)
Thus, the left-shift normally removes a redundant sign bit, increasing the
precision of the most significant product. Also, if the data format is frac-
tional, a single bit left-shift renormalizes the MSP to a fractional format.
The signed formats with and without left-shifting are shown in
Figure 2-7.

ALU outputs have the same width and data format as the inputs. The
multiplier, however, produces a 64-bit product from two 32-bit inputs. If
both operands are unsigned integers, the result is a 64-bit unsigned inte-
ger. If both operands are unsigned fractions, the result is a 64-bit unsigned
fraction. These formats are shown in Figure 2-6.

The multiplier has an 80-bit accumulator to allow the accumulation of
64-bit products. For more information on the multiplier and accumula-
tor, see “Multiply Accumulator (Multiplier)” on page 2-22.

ADSP-2136x SHARC Processor Programming Reference 2-9

Processing Elements

Figure 2-5. 32-Bit Fixed-Point Formats

31 30 29

• • •

2 1

-231 230 229 22 21 20

SIGN
BIT

WEIGHT

BIT

BINARY
POINT

0

31 30 29

• • •

2 1

2-29WEIGHT

BIT

BINARY
POINT

0

2-30 2-31-2-0 2-1 2-2
SIGNED

FRACTIONAL

SIGNED
INTEGER

• • • 2-30 2-31 2-32.2-1 2-2 2-3

UNSIGNED
INTEGER

UNSIGNED
FRACTIONAL

•

•

BINARY
POINT

31 30 29

• • •

2 1

231 230 229 22 21 20
•WEIGHT

BIT 0

31 30 29 2 1

WEIGHT

BIT

BINARY POINT

0

SIGN
BIT

Numeric Formats

2-10 ADSP-2136x SHARC Processor Programming Reference

Figure 2-6. 64-Bit Unsigned Fixed-Point Product

Figure 2-7. 64-Bit Signed Fixed-Point Product

UNSIGNED
INTEGER

UNSIGNED
FRACTIONAL

63 62 61

• • •

2 1

263 262 261 22 21 20WEIGHT

BIT 0

• • • 2-62WEIGHT

BIT

2-63 2-642-1 2-2 2-3

•

BINARY
POINT

•

BINARY
POINT

63 62 61 2 1 0

63 62 61

• • •

2 1

SIGN
BIT

WEIGHT

BIT 0

SIGNED INTEGER,
NO LEFT SHIFT -263 262 261 22 21 20

•

BINARY
POINT

SIGNED FRACTIONAL,
WITH LEFT SHIFT

63 62 61

• • •

2 1

2-61WEIGHT

BIT 0

2-62 2-63-20 2-1 2-2
•

BINARY
POINT

SIGN
BIT

ADSP-2136x SHARC Processor Programming Reference 2-11

Processing Elements

Setting Computational Modes
The MODE1 register controls the operating mode of the processing ele-
ments. Table B-2 on page B-5 lists the bits in the MODE1 register. The
following MODE1 bits control computational modes:

• Floating-point data format. Bit 16 (RND32) rounds floating-point
data to 32 bits (if 1) or rounds to 40 bits (if 0).

• Rounding mode. Bit 15 (TRUNC) rounds results with round-to-zero
(if 1) or round-to-nearest (if 0).

• ALU saturation. Bit 13 (ALUSAT) saturates results on positive or
negative fixed-point overflows (if 1) or returns unsaturated results
(if 0).

• Short word sign extension. Bit 14 (SSE) sign extends short word
16-bit data (if 1) or zero-fill the upper 16 bits (if 0).

• Secondary processor element (PEy). Bit 21 (PEYEN) enables com-
putations in PEy (SIMD mode) (if 1) or disables PEy (SISD mode)
(if 0).

Setting Computational Modes

2-12 ADSP-2136x SHARC Processor Programming Reference

32-Bit Floating-Point Format (Normal Word)
In the default mode, (RND32 bit=1), the multiplier and ALU support a sin-
gle-precision floating-point format, which is specified in the IEEE
754/854 standard. For more information on this standard, see “Numeric
Formats” on page 2-2. This format is IEEE 754/854 compatible for sin-
gle-precision floating-point operations in all respects except:

• The processor does not provide inexact flags. An inexact flag is an
exception flag whose bit position is inexact. The inexact exception
occurs if the rounded result of an operation is not identical to the
exact (infinitely precise) result. Thus, an inexact exception always
occurs when an overflow or an underflow occurs.

• NAN (Not-A-Number) inputs generate an invalid exception and
return a quiet NAN (all 1s).

• Denormal operands, using denormalized (or tiny) numbers, flush
to zero when input to a computational unit and do not generate an
underflow exception. A denormal operand is one of the float-
ing-point operands with an absolute value too small to represent
with full precision in the significant. The denormal exception
occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

• The processor supports round-to-nearest and round-toward-zero
modes, but does not support round to +infinity and round to
–infinity.

IEEE single-precision floating-point data uses a 23-bit mantissa with an
8-bit exponent plus sign bit. In this case, the computation unit sets the
eight LSBs of floating-point inputs to zeros before performing the opera-
tion. The mantissa of a result rounds to 23 bits (not including the hidden
bit), and the 8 LSBs of the 40-bit result clear to zeros to form a 32-bit
number, which is equivalent to the IEEE standard result.

ADSP-2136x SHARC Processor Programming Reference 2-13

Processing Elements

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits, even if the RND32 bit is set.

40-Bit Floating-Point Format
In extended-precision mode (RND32 bit=0), the processor supports a 40-bit
extended-precision floating-point mode, which has eight additional LSBs
of the mantissa and is compliant with the 754/854 standards. However,
results in this format are more precise than the IEEE single-precision stan-
dard specifies. Extended-precision floating-point data uses a 31-bit
mantissa with a 8-bit exponent plus sign a bit.

16-Bit Floating-Point Format (Short Word)
The processor supports a 16-bit floating-point storage format and pro-
vides instructions that convert the data for 40-bit computations. The
16-bit floating-point format uses an 11-bit mantissa with a 4-bit exponent
plus sign bit. The 16-bit data goes into bits 23 through 8 of a data register.
Two shifter instructions, FPACK and FUNPACK, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE float-
ing-point number in a data register into a 16-bit floating-point number.
FUNPACK converts a 16-bit floating-point number in a data register to a
32-bit IEEE floating-point number. Each instruction executes in a single
cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the
processor automatically extends the data into a 32-bit integer (bits 39
through 8). If the SSE bit in MODE1 is set (1), the processor sign-extends the
upper 16 bits. If the SSE bit is cleared (0), the processor zeros the upper 16
bits.

The 16-bit floating-point format supports gradual underflow. This
method sacrifices precision for dynamic range. When packing a number
that would have underflowed, the exponent clears to zero and the mantissa

Setting Computational Modes

2-14 ADSP-2136x SHARC Processor Programming Reference

(including a “hidden” 1) right-shifts the appropriate amount. The packed
result is a denormal, which can be unpacked into a normal IEEE float-
ing-point number.

32-Bit Fixed-Point Format
The processor represents fixed-point numbers in 32 bits, occupying the 32
MSBs in 40-bit data registers. Fixed-point data may be fractional or inte-
ger numbers and unsigned or two’s-complement. Each computational unit
has limitations on how these formats may be mixed for a given operation.
All computational units read the upper 32 bits of data (inputs, operands)
from the 40-bit registers (ignoring the eight LSBs) and write results to the
upper 32 bits (zeroing the eight LSBs).

Rounding Mode
The TRUNC bit in the MODE1 register determines the rounding mode for all
ALU operations, all floating-point multiplies, and fixed-point multiplies
of fractional data. The processor supports two rounding modes—
round-toward-zero and round-toward-nearest. The rounding modes com-
ply with the IEEE 754 standard and have the following definitions:

• Round-toward-zero (TRUNC bit=1). If the result before rounding is
not exactly representable in the destination format, the rounded
result is the number that is nearer to zero. This is equivalent to
truncation.

• Round-toward-nearest (TRUNC bit=0). If the result before rounding
is not exactly representable in the destination format, the rounded
result is the number that is nearer to the result before rounding. If
the result before rounding is exactly halfway between two numbers
in the destination format (differing by an LSB), the rounded result
is the number that has an LSB equal to zero.

ADSP-2136x SHARC Processor Programming Reference 2-15

Processing Elements

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB
less than the value that represents infinity, a result that is halfway between
the maximum floating-point value and infinity rounds to infinity in this
mode.

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Using Computational Status
The multiplier and ALU each provide exception information when exe-
cuting floating-point operations. Each unit updates overflow, underflow,
and invalid operation flags in the processing element’s arithmetic status
(ASTATx and ASTATy) registers and sticky status (STKYx and STKYy) registers.
An underflow, overflow, or invalid operation from any unit also generates
a maskable interrupt. There are three ways to use floating-point excep-
tions from computations in program sequencing:

• Enable interrupts and use an interrupt service routine (ISR) to han-
dle the exception condition immediately. This method is
appropriate if it is important to correct all exceptions as they occur.

• Use conditional instructions to test the exception flags in the
ASTATx or ASTATy registers after the instruction executes. This
method permits monitoring each instruction’s outcome.

Arithmetic Logic Unit (ALU)

2-16 ADSP-2136x SHARC Processor Programming Reference

• Use the bit test (BTST) instruction to examine exception flags in the
STKY register after a series of operations. If any flags are set, some of
the results are incorrect. Use this method when exception handling
is not critical.

More information on ASTAT and STKY status appears in the sections that
describe the computational units. For summaries relating instructions and
status bits, see Table 2-4, Table 2-5, Table 2-7, Table 2-9, and
Table 2-10.

Arithmetic Logic Unit (ALU)
The ALU performs arithmetic operations on fixed-point or floating-point
data and logical operations on fixed-point data. ALU fixed-point instruc-
tions operate on 32-bit fixed-point operands and output 32-bit
fixed-point results, and ALU floating-point instructions operate on 32-bit
or 40-bit floating-point operands and output 32-bit or 40-bit float-
ing-point results. ALU instructions include:

• Floating-point addition, subtraction, add/subtract, average

• Fixed-point addition, subtraction, add/subtract, average

• Floating-point manipulation: binary log, scale, mantissa

• Fixed-point add with carry, subtract with borrow, increment,
decrement

• Logical And, Or, Xor, Not

• Functions: ABS, PASS, MIN, MAX, CLIP, COMPARE

• Format conversion

• Reciprocal and reciprocal square root primitives

ADSP-2136x SHARC Processor Programming Reference 2-17

Processing Elements

ALU Operation
ALU instructions take one or two inputs: X input and Y input. These
inputs (known as operands) can be any data registers in the register file.
Most ALU operations return one result; in add/subtract operations, the
ALU operation returns two results; in compare operations, the ALU oper-
ation returns no result (only flags are updated). ALU results can be
returned to any location in the register file.

Because of the 5-stage pipeline in the ADSP-2136x processor core, the
operands are fetched before the results are written back. Therefore, the
ALU can read and write the same register file location in a single cycle. If
the ALU operation is fixed-point, the inputs are treated as 32-bit
fixed-point operands. The ALU transfers the upper 32 bits from the
source location in the register file. For fixed-point operations, the result(s)
are 32-bit fixed-point values. Some floating-point operations (LOGB, MANT
and FIX) can also yield fixed-point results.

The processor transfers fixed-point results to the upper 32 bits of the data
register and clears the lower eight bits of the register. The format of
fixed-point operands and results depends on the operation. In most arith-
metic operations, there is no need to distinguish between integer and
fractional formats. Fixed-point inputs to operations such as scaling a float-
ing-point value are treated as integers. For purposes of determining status
such as overflow, fixed-point arithmetic operands and results are treated as
two’s-complement numbers.

ALU Saturation
When the ALUSAT bit is set (=1) in the MODE1 register, the ALU is in satura-
tion mode. In this mode, positive fixed-point overflows return the
maximum positive fixed-point number (0x7FFF FFFF), and negative
overflows return the maximum negative number (0x8000 0000).

Arithmetic Logic Unit (ALU)

2-18 ADSP-2136x SHARC Processor Programming Reference

When the ALUSAT bit is cleared (=0) in the MODE1 register, fixed-point
results that overflow are not saturated; the upper 32 bits of the result are
returned unaltered.

ALU Status Flags
ALU operations update seven status flags in the processing element’s arith-
metic status (ASTATx and ASTATy) registers. Table B-4 on page B-14 lists
the bits in these registers. The following bits in ASTATx or ASTATy registers
flag the ALU status (a 1 indicates the condition) of the most recent ALU
operation:

• ALU result zero or floating-point underflow, bit 0 (AZ)

• ALU overflow, bit 1 (AV)

• ALU result negative, bit 2 (AN)

• ALU fixed-point carry, bit 3 (AC)

• ALU X input sign for ABS, MANT operations, bit 4 (AS)

• ALU floating-point invalid operation, bit 5 (AI)

• Last ALU operation was a floating-point operation, bit 10 (AF)

• Compare accumulation register results of last eight compare opera-
tions, bits 31-24 (CACC)

ALU operations also update four sticky status flags in the processing ele-
ment’s sticky status (STKYx and STKYy) registers. Table B-5 on page B-20
lists the bits in these registers. The following bits in STKYx or STKYy flag
the ALU status (a 1 indicates the condition). Once set, a sticky flag
remains high until explicitly cleared:

• ALU floating-point underflow, bit 0 (AUS)

• ALU floating-point overflow, bit 1 (AVS)

ADSP-2136x SHARC Processor Programming Reference 2-19

Processing Elements

• ALU fixed-point overflow, bit 2 (AOS)

• ALU floating-point invalid operation, bit 5 (AIS)

Flag updates occur at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky status register explicitly in the same cycle that the ALU is
performing an operation, the explicit write to the status register supersedes
any flag update from the ALU operation.

ALU Instruction Summary
Table 2-4 and Table 2-5 list the ALU instructions and show how they
relate to ASTATx,y and STKYx,y flags. For more information on assembly
language syntax, see “Instruction Set” in Chapter 8, Instruction Set, and
“Computations Reference” in Chapter 9, Computations Reference. In
these tables, note the meaning of these symbols:

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates that the flag may be set or cleared, depending on the
results of instruction

• ** indicates that the flag may be set (but not cleared), depending
on the results of the instruction

• – indicates no effect

Arithmetic Logic Unit (ALU)

2-20 ADSP-2136x SHARC Processor Programming Reference

Table 2-4. Fixed-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags

Fixed-Point: A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Rn = Rx + Ry * * * * 0 0 0 – – – ** –

Rn = Rx – Ry * * * * 0 0 0 – – – ** –

Rn = Rx + Ry + CI * * * * 0 0 0 – – – ** –

Rn = Rx – Ry + CI – 1 * * * * 0 0 0 – – – ** –

Rn = (Rx + Ry)/2 * 0 * * 0 0 0 – – – – –

COMP(Rx, Ry) * 0 * 0 0 0 0 * – – – –

COMPU(Rx,Ry) * 0 * 0 0 0 0 * -- -- -- --

Rn = Rx + CI * * * * 0 0 0 – – – ** –

Rn = Rx + CI – 1 * * * * 0 0 0 – – – ** –

Rn = Rx + 1 * * * * 0 0 0 – – – ** –

Rn = Rx – 1 * * * * 0 0 0 – – – ** –

Rn = –Rx * * * * 0 0 0 – – – ** –

Rn = ABS Rx * * 0 0 * 0 0 – – – ** –

Rn = PASS Rx * 0 * 0 0 0 0 – – – – –

Rn = Rx AND Ry * 0 * 0 0 0 0 – – – – –

Rn = Rx OR Ry * 0 * 0 0 0 0 – – – – –

Rn = Rx XOR Ry * 0 * 0 0 0 0 – – – – –

Rn = NOT Rx * 0 * 0 0 0 0 – – – – –

Rn = MIN(Rx, Ry) * 0 * 0 0 0 0 – – – – –

Rn = MAX(Rx, Ry) * 0 * 0 0 0 0 – – – – –

Rn = CLIP Rx BY Ry * 0 * 0 0 0 0 – – – – –

ADSP-2136x SHARC Processor Programming Reference 2-21

Processing Elements

Table 2-5. Floating-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags

Floating-Point: A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Fn = Fx + Fy * * * 0 0 * 1 – ** ** – **

Fn = Fx – Fy * * * 0 0 * 1 – ** ** – **

Fn = ABS (Fx + Fy) * * 0 0 0 * 1 – ** ** – **

Fn = ABS (Fx – Fy) * * 0 0 0 * 1 – ** ** – **

Fn = (Fx + Fy)/2 * 0 * 0 0 * 1 – ** – – **

COMP(Fx, Fy) * 0 * 0 0 * 1 * – – – **

Fn = –Fx * * * 0 0 * 1 – – ** – **

Fn = ABS Fx * * 0 0 * * 1 – – ** – **

Fn = PASS Fx * 0 * 0 0 * 1 – – – – **

Fn = RND Fx * * * 0 0 * 1 – – ** – **

Fn = SCALB Fx BY Ry * * * 0 0 * 1 – ** ** – **

Rn = MANT Fx * * 0 0 * * 1 – – ** – **

Rn = LOGB Fx * * * 0 0 * 1 – – ** – **

Rn = FIX Fx BY Ry * * * 0 0 * 1 – ** ** – **

Rn = FIX Fx * * * 0 0 * 1 – ** ** – **

Fn = FLOAT Rx BY Ry * * * 0 0 0 1 – ** ** – –

Fn = FLOAT Rx * 0 * 0 0 0 1 – – – – –

Fn = RECIPS Fx * * * 0 0 * 1 – ** ** – **

Fn = RSQRTS Fx * * * 0 0 * 1 – – ** – **

Fn = Fx COPYSIGN Fy * 0 * 0 0 * 1 – – – – **

Fn = MIN(Fx, Fy) * 0 * 0 0 * 1 – – – – **

Fn = MAX(Fx, Fy) * 0 * 0 0 * 1 – – – – **

Fn = CLIP Fx BY Fy * 0 * 0 0 * 1 – – – – **

Multiply Accumulator (Multiplier)

2-22 ADSP-2136x SHARC Processor Programming Reference

Multiply Accumulator (Multiplier)
The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply/accumulate operations. Fixed-point multiply/accu-
mulates are available with cumulative addition or cumulative subtraction.
Multiplier floating-point instructions operate on 32-bit or 40-bit float-
ing-point operands and output 32-bit or 40-bit floating-point results.
Multiplier fixed-point instructions operate on 32-bit fixed-point data and
produce 80-bit results. Inputs are treated as fractional or integer, unsigned
or two’s-complement. Multiplier instructions include:

• Floating-point multiplication

• Fixed-point multiplication

• Fixed-point multiply/accumulate with addition, rounding optional

• Fixed-point multiply/accumulate with subtraction, rounding
optional

• Rounding multiplier result register

• Saturating multiplier result register

• Clearing multiplier result register

Multiplier Operation
The multiplier takes two inputs: X and Y. These inputs (also known as
operands) can be any data registers in the register file. The multiplier can
accumulate fixed-point results in the local multiplier result (MRF) registers
or write results back to the register file. The results in MRF can also be
rounded or saturated in separate operations. Floating-point multiplies
yield floating-point results, which the multiplier writes directly to the reg-
ister file.

ADSP-2136x SHARC Processor Programming Reference 2-23

Processing Elements

Because of the 5-stage pipeline in the ADSP-2136x processor core, the
operands are fetched before the results are written back. Therefore, the
multiplier can read and write the same register file location in a single
cycle.

For fixed-point multiplies, the multiplier reads the inputs from the upper
32 bits of the data registers. Fixed-point operands may be integer, frac-
tional or both formats. The format of the result matches the format of the
inputs. Each fixed-point operand may be either an unsigned number or a
two’s-complement number. If both inputs are fractional and signed, the
multiplier automatically shifts the result left one bit to remove the redun-
dant sign bit. The register name(s) within the multiplier instruction
specify input data type(s)—Fx for floating-point and Rx for fixed-point.

Multiplier Result Register (Fixed-Point)
Fixed-point operations place 80-bit results in the multiplier’s foreground
MRF register or background MRB register, depending on which is active. For
more information on selecting the result register, see “Alternate (Second-
ary) Data Registers” on page 2-39.

The location of a result in the MRF register’s 80-bit field depends on
whether the result is in fractional or integer format, as shown in
Figure 2-8. If the result is sent directly to a data register, the 32-bit result
with the same format as the input data is transferred, using bits 63-32 for
a fractional result or bits 31-0 for an integer result. The eight LSBs of the
40-bit register file location are zero-filled.

Fractional results can be rounded-to-nearest before being sent to the regis-
ter file. If rounding is not specified, discarding bits 31-0 effectively
truncates a fractional result (rounds to zero). For more information on
rounding, see “Rounding Mode” on page 2-14.

The MRF register is comprised of the MRF2, MRF1, and MRF0 registers, which
individually can be read from or written to the register file. Each of these
registers has the same format. When data is read from MRF2, it is

Multiply Accumulator (Multiplier)

2-24 ADSP-2136x SHARC Processor Programming Reference

sign-extended to 32 bits as shown in Figure 2-9. The processor zero-fills
the eight LSBs of the 40-bit register file location when data is read from
MRF2, MRF1, or MRF0 written to the register file. When the processor writes
data into MRF2, MRF1, or MRF0 from the 32 MSBs of a register file location,
the eight LSBs are ignored. Data written to MRF1 is sign-extended to MRF2,
repeating the MSB of MRF1 in the 16 bits of MRF2. Data written to MRF0 is
not sign-extended.

Figure 2-8. Multiplier Fixed-Point Result Placement

Figure 2-9. MR Transfer Formats

MRF2 MRF0

OVERFLOW UNDERFLOWFRACTIONAL RESULT

OVERFLOW INTEGER RESULTOVERFLOW

MRF1

79 63 31 0

ZEROSSIGN-EXTEND MRF2

MRF0

MRF1

16 BITS 16 BITS

8 BITS32 BITS

ZEROS

ZEROS

8 BITS32 BITS

8 BITS

ADSP-2136x SHARC Processor Programming Reference 2-25

Processing Elements

In addition to multiply, fixed-point operations include accumulate,
round, and saturate fixed-point data. There are three MRF register opera-
tions: clear (CLR), round (RND), and saturate (SAT).

The CLR operation (MRF=0) resets the specified MRF register to zero. Often,
it is best to perform this operation at the start of a multiply/accumulate
operation to remove the results of the previous operation.

The RND operation (MRF=RND MRF) applies only to fractional results and
integer results are not effected. This operation rounds the 80-bit MRF value
to nearest at bit 32, for example, the MRF1-MRF0 boundary. Rounding a
fixed-point result occurs as part of a multiply or multiply/accumulate
operation or as an explicit operation on the MRF register. The rounded
result in MRF1 can be sent to the register file or back to the same MRF regis-
ter. To round a fractional result to zero (truncation) instead of to nearest,
a program transfers the unrounded result from MRF1, discarding the lower
32 bits in MRF0.

The SAT operation (MRF=SAT MRF) sets MRF to a maximum value if the MRF
value has overflowed. Overflow occurs when the MRF value is greater than
the maximum value for the data format—unsigned or two’s-complement
and integer or fractional—as specified in the saturate instruction. The six
possible maximum values appear in Table 2-6. The result from MRF satura-
tion can be sent to the register file or back to the same MRF register.

Table 2-6. Fixed-Point Format Maximum Values (Saturation)

Maximum Number (Hexadecimal)

MRF2 MRF1 MRF0

Two’s-complement fractional (positive) 0000 7FFF FFFF FFFF FFFF

Two’s-complement fractional (negative) FFFF 8000 0000 0000 0000

Two’s-complement integer (positive) 0000 0000 0000 7FFF FFFF

Two’s-complement integer (negative) FFFF FFFF FFFF 8000 0000

Multiply Accumulator (Multiplier)

2-26 ADSP-2136x SHARC Processor Programming Reference

Multiplier Status Flags
Multiplier operations update four status flags in the processing element’s
arithmetic status registers (ASTATx and ASTATy). “Arithmetic Status Regis-
ters (ASTATx and ASTATy)” on page B-12 lists the bits in these registers.
The bits in the ASTATx or ASTATy registers that indicate the multiplier sta-
tus (a 1 indicates the condition) of the most recent multiplier operation
are:

• Multiplier result negative, bit 6 (MN)

• Multiplier overflow, bit 7 (MV)

• Multiplier underflow, bit 8 (MU)

• Multiplier floating-point invalid operation, bit 9 (MI)

Multiplier operations also update four “sticky” status flags in the process-
ing element’s sticky status (STKYx and STKYy) registers. Table B-5 on
page B-20 lists the bits in these registers. Once set, a sticky flag remains
high until explicitly cleared. The bits in the STKYx or STKYy registers that
indicate multiplier status (a 1 indicates the condition) are:

• Multiplier fixed-point overflow, bit 6 (MOS)

• Multiplier floating-point overflow, bit 7 (MVS)

• Multiplier underflow, bit 8 (MUS)

• Multiplier floating-point invalid operation, bit 9 (MIS)

Unsigned fractional number 0000 FFFF FFFF FFFF FFFF

Unsigned integer number 0000 0000 0000 FFFF FFFF

Table 2-6. Fixed-Point Format Maximum Values (Saturation) (Cont’d)

Maximum Number (Hexadecimal)

MRF2 MRF1 MRF0

ADSP-2136x SHARC Processor Programming Reference 2-27

Processing Elements

Flag updates occur at the end of the cycle in which the status is generated
and are available on the next cycle. If a program writes the arithmetic sta-
tus register or sticky register explicitly in the same cycle that the multiplier
is performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

Multiplier Instruction Summary
Table 2-7 and Table 2-9 list the multiplier instructions and describe how
they relate to ASTATx,y and STKYx,y flags. For more information on
assembly language syntax, see “Instruction Set” in Chapter 8, Instruction
Set, and “Computations Reference” in Chapter 9, Computations Refer-
ence. In these tables, note the meaning of the following symbols:

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates that the flag may be set or cleared, depending on results
of instruction

• ** indicates that the flag may be set (but not cleared), depending
on results of instruction

• – indicates no effect

• The Input Mods column indicates the types of optional modifiers
that can be applied to the instruction inputs. For a list of modifiers,
see Table 2-8.

Multiply Accumulator (Multiplier)

2-28 ADSP-2136x SHARC Processor Programming Reference

Table 2-7. Fixed-Point Multiplier Instruction Summary

Instruction

Input
Mods

ASTATx,y Flags STKYx,y Flags

Fixed-Point:
For Input Mods, see
Table 2-8

M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Rn = Rx * Ry 1 * * * 0 – ** – –

MRF = Rx * Ry 1 * * * 0 – ** – –

MRB = Rx * Ry 1 * * * 0 – ** – –

Rn = MRF + Rx * Ry 1 * * * 0 – ** – –

Rn = MRB + Rx * Ry 1 * * * 0 – ** – –

MRF = MRF + Rx * Ry 1 * * * 0 – ** – –

MRB = MRB + Rx * Ry 1 * * * 0 – ** – –

Rn = MRF – Rx * Ry 1 * * * 0 – ** – –

Rn = MRB – Rx * Ry 1 * * * 0 – ** – –

MRF = MRF – Rx * Ry 1 * * * 0 – ** – –

MRB = MRB – Rx * Ry 1 * * * 0 – ** – –

Rn = SAT MRF 2 * * * 0 – ** – –

Rn = SAT MRB 2 * * * 0 – ** – –

MRF = SAT MRF 2 * * * 0 – ** – –

MRB = SAT MRB 2 * * * 0 – ** – –

Rn = RND MRF 3 * * * 0 – ** – –

Rn = RND MRB 3 * * * 0 – ** – –

MRF = RND MRF 3 * * * 0 – ** – –

MRB = RND MRB 3 * * * 0 – ** – –

MRF = 0 – 0 0 0 0 – – – –

MRB = 0 – 0 0 0 0 – – – –

MRxF = Rn – 0 0 0 0 – – – –

MRxB = Rn – 0 0 0 0 – – – –

Rn = MRxF – 0 0 0 0 – – – –

Rn = MRxB – 0 0 0 0 – – – –

ADSP-2136x SHARC Processor Programming Reference 2-29

Processing Elements

Table 2-8. Input Modifiers for Fixed-Point Multiplier Instruction

Input
Mods
from
Table
2-7

Input Mods—Options For Fixed-Point Multiplier Instructions

Note the meaning of the following symbols in this table:
Signed input — S

Unsigned input — U

Integer input — I

Fractional input — F

Fractional inputs, Rounded output — FR

Note that (SF) is the default format for one-input operations, and (SSF) is the
default format for two-input operations.

1 (SSF), (SSI), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI), (USFR), (UUF), (UUI), or
(UUFR)

2 (SF), (SI), (UF), or (UI)

3 (SF) or (UF)

Table 2-9. Floating-Point Multiplier Instruction Summary

Instruction ASTATx,y Flags STKYx,y Flags

Floating-Point: M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Fn = Fx * Fy * * * * ** – ** **

Barrel Shifter (Shifter)

2-30 ADSP-2136x SHARC Processor Programming Reference

Barrel Shifter (Shifter)
The shifter performs bit-wise operations on 32-bit fixed-point operands.
Shifter operations include:

• Shifts and rotates from off-scale left to off-scale right

• Bit manipulation operations, including bit set, clear, toggle, and
test

• Bit field manipulation operations, including extract and deposit

• Fixed-point/floating-point conversion operations, including expo-
nent extract, number of leading 1s or 0s

Shifter Operation
The shifter takes one to three inputs: X, Y, and Z. The inputs (known as
operands) can be any register in the register file. Within a shifter instruc-
tion, the inputs serve as follows.

• The X input provides data that is operated on.

• The Y input specifies shift magnitudes, bit field lengths, or bit
positions.

• The Z input provides data that is operated on and updated.

In the following example, Rx is the X input, Ry is the Y input, and Rn is the
Z input. The shifter returns one output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;

As shown in Figure 2-10, the shifter fetches input operands from the
upper 32 bits of a register file location (bits 39-8) or from an immediate
value in the instruction. Because of the 5-stage pipeline in the

ADSP-2136x SHARC Processor Programming Reference 2-31

Processing Elements

ADSP-2136x processor core, the operands are fetched before the results
are written back. Therefore, the shifter can read and write the same regis-
ter file location in a single cycle.

The X input and Z input are always 32-bit fixed-point values. The Y input
is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in the reg-
ister file. These inputs appear in Figure 2-10.

Some shifter operations produce 8 or 6-bit results. As shown in
Figure 2-11, the shifter places these results in the shf8 field or the bit6
field and sign-extends the results to 32 bits. The shifter always returns a
32-bit result.

The shifter supports bit field deposit and bit field extract instructions for
manipulating groups of bits within an input. The Y input for bit field
instructions specifies two 6-bit values, bit6 and len6, which are positioned
in the Ry register as shown in Figure 2-11. The shifter interprets bit6 and
len6 as positive integers. Bit6 is the starting bit position for the deposit or
extract, and len6 is the bit field length, which specifies how many bits are
deposited or extracted.

Figure 2-10. Register File Fields for Shifter Instructions

39 7 0

32-BIT Y INPUT OR RESULT

39 15 7 0

SHF8

8-BIT Y INPUT OR RESULT

Barrel Shifter (Shifter)

2-32 ADSP-2136x SHARC Processor Programming Reference

Field deposit (FDEP) instructions take a group of bits from the input regis-
ter (starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register. The bit6 value specifies the
starting bit position for the deposit. Figure 2-13 shows how the inputs,
bit6 and len6, work in a field deposit instruction

Rn = FDEP Rx By Ry

Figure 2-12 shows bit placement for the following field deposit
instruction:

R0 = FDEP R1 By R2;

Figure 2-11. Register File Fields for FDEP, FEXT Instructions

Figure 2-12. Bit Field Deposit Instruction

39 19 13 7 0

LEN6 BIT6

12-BIT Y INPUT

11111111

39 32 16

16

8

8

0

0

0x0000 00FF 00R1

00000000 0001000000000010

39 32 24 16 8 0

len6 bit6 len6 = 8
bit6 = 16

0x0000 0210 00R2

39 32 24 16 8 0

16 8 0

STARTING BIT POSITION
FOR DEPOSIT

REFERENCE POINT

0x00FF 0000 00R0 11111111

00000000

00000000

00000000 00000000 00000000

00000000 00000000

00000000 00000000 00000000

24

ADSP-2136x SHARC Processor Programming Reference 2-33

Processing Elements

Field extract (FEXT) instructions extract a group of bits as directed from
anywhere within the input register and place them in the result register,
aligned with the LSB of the 32-bit integer field. The bit6 value specifies
the starting bit position for the extract.

Figure 2-14 shows bit placement for the following field extract
instruction:

R3 = FEXT R4 By R5;

Figure 2-13. Bit Field Deposit Instruction

39 19 13 7 0

LEN6 BIT6RY

RN

RX

39 7 0

39 7 0

DEPOSIT FIELD

BIT6 REFERENCE POINT

LEN6 = NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION
FOR DEPOSIT IN RN

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD

Barrel Shifter (Shifter)

2-34 ADSP-2136x SHARC Processor Programming Reference

Shifter Status Flags
Shifter operations update three status flags in the processing element’s
arithmetic status registers (ASTATx and ASTATy). Table B-4 on page B-14
lists the bits in these registers. The following bits in the ASTATx or ASTATy
registers indicate shifter status (a 1 indicates the condition) for the most
recent ALU operation:

• Shifter overflow of bits to left of MSB, bit 11 (SV)

• Shifter result zero, bit 12 (SZ)

• Shifter input sign for exponent extract only, bit 13 (SS)

A flag update occurs at the end of the cycle in which the status is gener-
ated and is available on the next cycle. If a program writes the arithmetic
status register explicitly in the same cycle that the shifter is performing an
operation, the explicit write to ASTAT supersedes any flag update caused by
the shift operation.

Figure 2-14. Bit Field Extract Instruction

00000000 0001011100000010

39 32 24 16 8 0

len6 bit6

16 8 0

16 8 0

STARTING BIT POSITION
FOR DEPOSIT

REFERENCE POINT

len6 = 8
bit6 = 23

00001111

10000111 10000000

0x0000 0217 00

0x8710 0000 00

0x0000 000F 00

R5

R3

R4

00000000 00000000

00000000 00000000 00000000

00000000 00000000 00000000 00000000

39 32 24 16 8 0

39 32 24 16 8 0

ADSP-2136x SHARC Processor Programming Reference 2-35

Processing Elements

Shifter Instruction Summary
Table 2-10 lists the shifter instructions and shows how they relate to
ASTATx,y flags. For more information on assembly language syntax, see
“Instruction Set” in Chapter 8, Instruction Set, and “Computations Ref-
erence” in Chapter 9, Computations Reference. In these tables, note the
meaning of the following symbols:

• The Rn, Rx, Ry operands indicate any register file location; bit fields
used depend on instruction

• The Fn, Fx operands indicate any register file location; float-
ing-point word

• The * symbol indicates that the flag may be set or cleared, depend-
ing on data

Table 2-10. Shifter Instruction Summary

Instruction ASTATx,y Flags

SZ SV SS

Rn = LSHIFT Rx BY Ry * * 0

Rn = LSHIFT Rx BY <data8> * * 0

Rn = Rn OR LSHIFT Rx BY Ry * * 0

Rn = Rn OR LSHIFT Rx BY <data8> * * 0

Rn = ASHIFT Rx BY Ry * * 0

Rn = ASHIFT Rx BY<data8> * * 0

Rn = Rn OR ASHIFT Rx BY Ry * * 0

Rn = Rn OR ASHIFT Rx BY <data8> * * 0

Rn = ROT Rx BY Ry * 0 0

Rn = ROT Rx BY <data8> * 0 0

Rn = BCLR Rx BY Ry * * 0

Rn = BCLR Rx BY <data8> * * 0

Rn = BSET Rx BY Ry * * 0

Barrel Shifter (Shifter)

2-36 ADSP-2136x SHARC Processor Programming Reference

Rn = BSET Rx BY <data8> * * 0

Rn = BTGL Rx BY Ry * * 0

Rn = BTGL Rx BY <data8> * * 0

BTST Rx BY Ry * * 0

BTST Rx BY <data8> * * 0

Rn = FDEP Rx BY Ry * * 0

Rn = FDEP Rx BY <bit6>:<len6> * * 0

Rn = Rn OR FDEP Rx BY Ry * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> * * 0

Rn = FDEP Rx BY Ry (SE) * * 0

Rn = FDEP Rx BY <bit6>:<len6> (SE) * * 0

Rn = Rn OR FDEP Rx BY Ry (SE) * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) * * 0

Rn = FEXT Rx BY Ry * * 0

Rn = FEXT Rx BY <bit6>:<len6> * * 0

Rn = FEXT Rx BY Ry (SE) * * 0

Rn = FEXT Rx BY <bit6>:<len6> (SE) * * 0

Rn = EXP Rx (EX) * 0 *

Rn = EXP Rx * 0 *

Rn = LEFTZ Rx * * 0

Rn = LEFTO Rx * * 0

Rn = FPACK Fx 0 * 0

Fn = FUNPACK Rx 0 0 0

Table 2-10. Shifter Instruction Summary (Cont’d)

Instruction ASTATx,y Flags

SZ SV SS

ADSP-2136x SHARC Processor Programming Reference 2-37

Processing Elements

Data Register File
Each of the processor’s processing elements has a data register file, which
is a set of data registers that transfers data between the data buses and the
computational units. These registers also provide local storage for oper-
ands and results.

The two register files consist of 16 primary registers and 16 alternate (sec-
ondary) registers. The data registers are 40 bits wide. Within these
registers, 32-bit data is left-justified. If an operation specifies a 32-bit data
transfer to these 40-bit registers, the eight LSBs are ignored on register
reads, and the LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to and from the
register file(s) occur on the PM data bus and DM data bus, respectively.
One PM data bus access for each processing element and/or one DM data
bus access for each processing element can occur in one cycle. Transfers
between the register files and the DM or PM data buses can move up to
64 bits of valid data on each bus.

If an operation specifies the same register file location as both an input
and output, the 5-stage pipeline fetches the operands before the results are
written back. Therefore, the processor uses the old data as the operand,
before updating the location with the new result data. If writes to the same
location take place in the same cycle, only the write with higher prece-
dence actually occurs. The processor determines precedence for the write
operation from the source of the data; from highest to lowest, the prece-
dence is:

1. Data memory or universal register (Ureg)

2. Program memory

3. PEx ALU

Data Register File

2-38 ADSP-2136x SHARC Processor Programming Reference

4. PEy ALU

5. PEx Multiplier

6. PEy Multiplier

7. PEx Shifter

8. PEy Shifter

The data register file in Figure 2-1 on page 2-3 lists register names of R0
through R15 within the PEx’s register file. When a program refers to these
registers as R0 through R15, the computational units treat the contents of
these registers as fixed-point data. To perform floating-point computa-
tions, refer to these registers as F0 through F15. For example, the following
instructions refer to the same registers, but direct the computational units
to perform different operations:

F0 = F1 * F2; /* floating-point multiply */

R0 = R1 * R2; /* fixed-point multiply */

The F and R prefixes on register names do not effect the 32-bit or 40-bit
data transfer; the naming convention only determines how the ALU, mul-
tiplier, and shifter treat the data.

To maintain compatibility with code written for previous SHARC proces-
sors, the assembly syntax accommodates references to the PEx and PEy
data registers.

Code may refer only to the PEy data registers (S0 through S15) for data
move instructions. The rules for using register names are:

• R0 through R15 and F0 through F15 refer to PEx registers for data
move and computational instructions, whether the processor is in
SISD or SIMD mode.

ADSP-2136x SHARC Processor Programming Reference 2-39

Processing Elements

• R0 through R15 and F0 through F15 refer to both PEx and PEy reg-
ister for computational instructions in SIMD mode.

• S0 through S15 refer to PEy registers for data move instructions,
when the processor is in SISD or SIMD mode.

For more information on SISD and SIMD computational operations, see
“Secondary Processing Element (PEy)” on page 2-45. For more informa-
tion on ADSP-2136x assembly language, see“Instruction Set” in
Chapter 8, Instruction Set, and “Computations Reference” in Chapter 9,
Computations Reference.

Alternate (Secondary) Data Registers
Each register file has an alternate register set. To facilitate fast context
switching, the processor includes alternate register sets for data, results,
and data address generator registers. Bits in the MODE1 register control
when alternate registers become accessible. While inaccessible, the con-
tents of alternate registers are not affected by processor operations. Note
that there is a one cycle latency from the time when writes are made to the
MODE1 register until an alternate register set can be accessed. The alternate
register sets for data and results are described in this section. For more
information on alternate data address generator registers, see “Alternate
(Secondary) DAG Registers” on page 4-6.

Bits in the MODE1 register can activate independent alternate data register
sets: the lower half (R0-R7 and S0-S7) and the upper half (R8-R15 and
S8-S15). To share data between contexts, a program places the data to be
shared in one half of either the current processing element’s register file or
the opposite processing element’s register file and activates the alternate
register set of the other half. For information on how to activate alternate
data registers, see the description of the MODE1 register below.

Alternate (Secondary) Data Registers

2-40 ADSP-2136x SHARC Processor Programming Reference

Each multiplier has a primary or foreground (MRF) register and alternate or
background (MRB) results register. A bit in the MODE1 register selects which
result register receives the result from the multiplier operation, swapping
which register is the current MRF or MRB. This swapping facilitates context
switching. Unlike other registers that have alternates, both MRF and MRB are
accessible at the same time. Fixed-point multiplies can accumulate results
in the MRF or MRB registers, without regard to the state of the MODE1 regis-
ter. With this arrangement, code can use the result registers as primary
and alternate accumulators, or code can use these registers as two parallel
accumulators. This feature facilitates complex math.

The MODE1 register controls the access to alternate registers. Table B-2 on
page B-5 lists the bits in MODE1. The following bits in the MODE1 register
control alternate registers (a 1 enables the alternate set):

• Secondary registers for computational unit results, bit 2 (SRCU)

• Secondary registers for the hi register file, R8–R15 and S8–S15, bit 7
(SRRFH)

• Secondary registers for the lo register file, R0–R7 and S0–S7, bit 10
(SRRFL)

The following example demonstrates how code should handle the one
cycle of latency—from the instruction that sets the bit in the MODE1 regis-
ter until the alternate registers may be accessed. Note that it is possible to
use any instruction that does not access the switching register file instead
of a NOP instruction.

BIT SET MODE1 SRRFL; /* activate alternate reg. file */

NOP; /* wait for access to alternates */

R0 = 7;

ADSP-2136x SHARC Processor Programming Reference 2-41

Processing Elements

Multifunction Computations
The processor supports multiple parallel (multifunction) computations by
using the parallel data paths within its computational units. These instruc-
tions complete in a single cycle, and they combine parallel operation of
the multiplier and the ALU or dual ALU functions. The multiple opera-
tions perform as if they were in corresponding single function
computations. Multifunction computations also handle flags in the same
way as the single function computations, except that in the dual add/sub-
tract computation, the ALU flags from the two operations are ORed
together.

To work with the available data paths, the computational units constrain
which data registers hold the four input operands for multifunction com-
putations. These constraints limit which registers may hold the X input
and Y input for the ALU and multiplier.

Figure 2-15 shows a computational unit and indicates which registers may
serve as X inputs and Y inputs for the ALU and multiplier. For example,
the X input to the ALU can only be R8, R9, R10 or R11. Note that the
shifter is gray in Figure 2-15 to indicate no shifter multifunction
operations.

Table 2-12, Table 2-13, Table 2-14, and Table 2-15 list the multifunc-
tion computations. For more information on assembly language syntax,
see“Instruction Set” in Chapter 8, Instruction Set, and“Computations
Reference” in Chapter 9, Computations Reference. Table 2-11 provides
the description of the following symbols.

Multifunction Computations

2-42 ADSP-2136x SHARC Processor Programming Reference

Figure 2-15. Input Registers for Multifunction Computations
(ALU and Multiplier)

REGISTER FILE
(16 x 40-BIT)

R0
R1
R2
R3

R4
R5
R6
R7

R12
R13
R14
R15

R8
R9
R10
R11

MULTIPLIER SHIFTER ALU

MRF2 MRF0MRF1

DM DATA BUS

PM DATA BUS

ASTATX STKYX

MODE1

TO PROGRAM SEQUENCER

X Y Z XY XY

NOTE THAT SHIFTER IS FADED
HERE, INDICATING THAT IT IS

NOT AVAILABLE FOR
MULTIFUNCTION INSTRUCTIONS.

ADSP-2136x SHARC Processor Programming Reference 2-43

Processing Elements

Table 2-11. Multifunction Computation Symbol Descriptions

Symbol Description

Rm, Ra, Rs, Rx, Ry any register file location; fixed-point

Fm, Fa, Fs, Fx, Fy any register file location; floating-point

R3–0 data file registers R3, R2, R1, or R0

R7-4 data file registers R7, R6, R5 or R4

F3–0 data file registers F3, F2, F1, or F0

F7–4 data file registers F7, F6, F5, or F4

R11–8 data file registers R11, R10, R9, or R8

F11–8 data file registers F11, F10, F9, or F8

R15–12 data file registers R15, R14, R13, or R12

F15–12 data file registers F15, F14, F13, or F12

SSFR the X input is signed, the Y input is signed, use fractional inputs,
and rounded-to-nearest output

SSF the X input is signed, Y input is signed, use fractional input

Table 2-12. Dual Add and Subtract

Ra = Rx + Ry, Rs = Rx – Ry

Fa = Fx + Fy, Fs = Fx – Fy

Table 2-13. Fixed-Point Multiply and Add, Subtract, or Average

(Any combination of left and right column)

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2

MRF = MRF – R3-0 * R7-4 (SSF),

Rm = MRF – R3-0 * R7-4 (SSFR),

Multifunction Computations

2-44 ADSP-2136x SHARC Processor Programming Reference

Another type of multifunction operation available on the processor com-
bines transfers between the results and data registers and transfers between
memory and data registers. These parallel operations complete in a single
cycle. For example, the processor can perform the following multiply and
parallel read of data memory:

MRF = MRF – R5 * R0, R6 = DM(I1,M2);

Or, the processor can perform the following result register transfer and
parallel read:

R5 = MR1F, R6 = DM(I1,M2);

Table 2-14. Floating-Point Multiply and ALU Operation

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12

Fm = F3-0 * F7-4, Fa = F11-8 – F15-12

Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12

Fm = F3-0 * F7-4, Ra = FIX F11-8 by R15-12

Fm = F3-0 * F7-4, Fa = (F11-8 + F15-12)/2

Fm = F3-0 * F7-4, Fa = ABS F11-8

Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12)

Fm = F3-0 * F7-4, Fa = MIN (F11-8, F15-12)

Table 2-15. Multiply With Dual Add and Subtract

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12, Rs = R11-8 – R15-12

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12, Fs = F11-8 – F15-12

ADSP-2136x SHARC Processor Programming Reference 2-45

Processing Elements

Secondary Processing Element (PEy)
The ADSP-2136x processor contains two sets of computational units and
associated register files. As shown in Figure 2-16, these two processing ele-
ments (PEx and PEy) support SIMD operation.

The MODE1 register controls the operating mode of the processing ele-
ments. Table B-2 on page B-5 lists the bits in MODE1. The PEYEN bit (bit
21) in the MODE1 register enables or disables the PEy processing element.
When PEYEN is cleared (0), the ADSP-2136x processor operates in SISD
mode, using only PEx. When the PEYEN bit is set (1), the processor oper-
ates in SIMD mode, using the PEx and PEy processing elements. There is
a one cycle delay after PEYEN is set or cleared, before the change to or from
SIMD mode takes effect.

Figure 2-16. Block Diagram Showing Secondary Execution Complex

MULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEy)

16 x 40-BITMULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEx)

16 x 40-BIT

PM DATA BUS

DM DATA BUS
BUS

CONNECT
(PX)

16/32/40/64

16/32/40/64

PROGRAM
SEQUENCER

SAME INSTRUCTION GOES TO BOTH ELEMENTS

DIFFERENT DATA GOES TO EACH ELEMENT

Secondary Processing Element (PEy)

2-46 ADSP-2136x SHARC Processor Programming Reference

To support SIMD, the processor performs these parallel operations:

• Dispatches a single instruction to both processing element’s com-
putational units

• Loads two sets of data from memory, one for each processing
element

• Executes the same instruction simultaneously in both processing
elements

• Stores data results from the dual executions to memory

Using the information here and in“Instruction Set” in Chapter 8,
Instruction Set, and “Computations Reference” in Chapter 9,
Computations Reference. It is possible through the SIMD mode’s
parallelism to double performance over similar algorithms running
in SISD (ADSP-2106x processor compatible) mode.

The two processing elements are symmetrical; each contains these func-
tional blocks:

• ALU

• Multiplier primary and alternate result registers

• Shifter

• Data register file and alternate register file

Dual Compute Units Sets
The computational units (ALU, multiplier, and shifter) in PEx and PEy
are identical. The data bus connections for the dual computational units
permit asymmetric data moves to, from, and between the two processing
elements. Identical instructions execute on the PEx and PEy computa-
tional units; the difference is the data. The data registers for PEy
operations are identified (implicitly) from the PEx registers in the

ADSP-2136x SHARC Processor Programming Reference 2-47

Processing Elements

instruction. This implicit relationship between PEx and PEy data registers
corresponds to complementary register pairs in Table 2-16. Any universal
registers (Ureg) that do not appear in Table 2-16 have the same identities
in both PEx and PEy. When a computation in SIMD mode refers to a reg-
ister in the PEx column, the corresponding computation in PEy refers to
the complimentary register in the PEy column.

Table 2-16. SIMD Mode Complementary Register Pairs

PEx PEy PEx PEy

R0 S0 R9 S9

R1 S1 R10 S10

R2 S2 R11 S11

R3 S3 R12 S12

R4 S4 R13 S13

R5 S5 R14 S14

R6 S6 ASTATx ASTATy

R7 S7 STKYx STKYy

R8 S8

Table 2-17. Other Complementary Register Pairs

USTAT1 USTAT2

USTAT3 USTAT4

PX1 PX2

MRF MSF1

1 These register pairs are not directly accessible by instructions. However,
these registers can be read using the multiplier operation MRxF/B =
Rn/Rn = MRxF/B. For more information on this instruction, see “Com-
putations Reference” in Chapter 9, Computations Reference.

MRB MSB1

Secondary Processing Element (PEy)

2-48 ADSP-2136x SHARC Processor Programming Reference

Dual Register Files
The operand, result busing, and porting are identical in the two 16-entry
data register files (one in each PE). The same is true for each 16-entry
alternate register files. The transfer direction, data bus, source and destina-
tion registers and usage depend on the following conditions:

• Computational mode:

— Is PEy enabled—PEYEN bit=1 in MODE1 register?

— Is the data register file in PEx (R0–R15, F0–F15) or PEy
(S0–S15)?

— Is the instruction a data register swap between the process-
ing elements?

• Data addressing mode:

— What is the state of the internal memory data width (IMDW)
bits in the system control (SYSCTL) register?

— Is broadcast write enabled— Are BDCST1,9 bits in MODE1
register =0?

— What is the type of address—long, normal, or short word?

— Is long word override (LW) specified in the instruction?

— What are the states of instruction fields for DAG1 or
DAG2?

• Program sequencing (conditional logic):

— What is the outcome of the instruction’s condition compar-
ison on each processing element?

ADSP-2136x SHARC Processor Programming Reference 2-49

Processing Elements

For information on SIMD issues that relate to computational modes, see
“SIMD (Computational) Operations” on page 2-49. For information on
SIMD issues relating to data addressing, see “Addressing in SISD and
SIMD Modes” on page 4-20. For information on SIMD issues relating to
program sequencing, see “Summary” on page 3-83.

Dual Alternate Registers
Both register files consist of a primary set of 16 x 40-bit registers and an
alternate set of 16 x 40-bit registers. Context switching between the two
sets of registers occurs in parallel between the two processing elements.
For more information, see “Alternate (Secondary) Data Registers” on
page 2-39.

SIMD (Computational) Operations
In SIMD mode, the dual processing elements execute the same instruc-
tion, but operate on different data. To support SIMD operation, the
elements support a variety of dual data move features.

The processor supports unidirectional and bidirectional register-to-regis-
ter transfers with the Conditional Compute and Move instruction. All
four combinations of inter-register file and intra-register file transfers
(PEx ↔ PEx, PEx ↔ PEy, PEy ↔ PEx, and PEy ↔ PEy) are possible in
SISD (unidirectional) and SIMD (bidirectional) modes.

In SISD mode (PEYEN bit=0), the register-to-register transfers are unidirec-
tional; an operation performed on one processing element is not
duplicated on the other processing element. The SISD transfer uses a
source register and a destination register. Either register can be in either
element’s data register file. For a summary of unidirectional transfers, see
the upper half of Table 2-18 on page 2-51. In SISD mode a condition for
an instruction tests the PEx element only, but it applies to the entire
instruction.

Secondary Processing Element (PEy)

2-50 ADSP-2136x SHARC Processor Programming Reference

In SIMD mode (PEYEN bit=1), register-to-register transfers are bidirec-
tional; an operation performed on one element is duplicated in parallel on
the other element. The instruction uses two source registers (one from
each element’s register file) and two destination registers (one from each
element’s register file). For a summary of bidirectional transfers, see the
lower half of Table 2-18. In SIMD mode, conditional explicit and
implicit transfers are tested and executed separately in PEx and PEy,
respectively, as detailed in Table 2-18.

Bidirectional register-to-register transfers in SIMD mode are allowed
between a data register and a DAG, control, or status register. When the
DAG, control, or status register is a source of the transfer, the destination
can be a data register. This SIMD transfer duplicates the contents of the
source register in a data register in both processing elements.

Careful programming is required when a DAG, control, or status register
is a destination of a transfer from a data register. If the destination register
has a complement (for example ASTATx and ASTATy), the SIMD transfer
moves the contents of the explicit data register into the explicit destina-
tion and moves the contents of the implicit data register into the implicit
destination (the complement). If the destination register has no comple-
ment (for example, I0), only the explicit transfer occurs.

Even if the code uses a conditional operation to select whether the transfer
occurs, only the explicit transfer can take place if the destination register
has no complement.

When a DAG, control, or status register is both a source and a destina-
tion, the data move operation executes the same as if SIMD mode were
disabled.

In both SISD and SIMD modes, the processor supports bidirectional reg-
ister-to-register swaps. The swap occurs between one register in each
processing element’s data register file.

ADSP-2136x SHARC Processor Programming Reference 2-51

Processing Elements

Registers swaps use the special swap operator, <->. A register-to-register
swap occurs when registers in different processing elements exchange val-
ues; for example R0 <-> S1. Only single, 40-bit register-to-register swaps
are supported; double register operations are not supported.

When register-to-register swaps are unconditional, they operate the same
in SISD mode and SIMD mode. If a condition is added to the instruction
in SISD mode, the condition tests only in the PEx element and controls
the entire operation. If a condition is added in SIMD mode, the condition
tests in both the PEx and PEy elements separately and the halves of the
operation are controlled, as detailed in Table 2-18.

Table 2-18. Register-to-Register Move Summary (SISD Versus SIMD)

Mode Instruction Explicit Transfer
Executed
According to PEx

Implicit Transfer
Executed
According to PEx

SISD1

1 In SISD mode, the conditional applies only to the entire operation and is only tested against PEx’s
flags. When the condition tests true, the entire operation occurs.

IF condition compute, Rx = Ry; Rx loaded from Ry None

IF condition compute, Rx = Sy; Rx loaded from Sy None

IF condition compute, Sx = Ry; Sx loaded from Ry None

IF condition compute, Sx = Sy; Sx loaded from Sy None

IF condition compute, Rx <-> Sy; Rx loaded from Sy Sy loaded from Rx

SIMD2

2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where the
condition tests true (PEx for the explicit and PEy for the implicit), the operation occurs in that pro-
cessing element.

IF condition compute, Rx = Ry; Rx loaded from Ry Sx loaded from Sy

IF condition compute, Rx = Sy; Rx loaded from Sy Sx loaded from Ry

IF condition compute, Sx = Ry; Sx loaded from Ry Rx loaded from Sy

IF condition compute, Sx = Sy; Sx loaded from Sy Rx loaded from Ry

IF condition compute, Rx <-> Sy;3

3 Register-to- register transfers (R0=S0) and register swaps (R0<->S0) do not cause a PMD bus conflict.
These operations use only the DMD bus and a hidden 16-bit bus to perform the two register moves.

Rx loaded from Sy Sy loaded from Rx

Secondary Processing Element (PEy)

2-52 ADSP-2136x SHARC Processor Programming Reference

SIMD and Status Flags
When the processor is in SIMD mode (PEYEN bit=1), computations on
both processing elements generate status flags, producing a logical ORing
of the exception status test on each processing element. If one of the four
fixed-point or floating-point exceptions is enabled, an exception condition
on one or both processing elements generates an exception interrupt.
Interrupt service routines (ISRs) must determine which of the processing
elements encountered the exception. Returning from a floating-point
interrupt does not automatically clear the STKY state. Program code must
clear the STKY bits in both processing element’s sticky status (STKYx and
STKYy) registers as part of the exception service routine. For more informa-
tion, see “Interrupts and Sequencing” on page 3-68.

ADSP-2136x SHARC Processor Programming Reference 3-1

3 PROGRAM SEQUENCER

The program sequencer controls program flow by constantly providing
the address of the next instruction to be fetched for execution. Program
flow in the processor is mostly linear, with the processor executing
instructions sequentially. This linear flow varies occasionally when the
program branches due to nonsequential program structures, such as those
described below. Nonsequential structures direct the processor to execute
an instruction that is not at the next sequential address following the cur-
rent instruction. These structures include:

• Loops. One sequence of instructions executes multiple times with
zero overhead.

• Subroutines. A traditional CALL structure where the processor tem-
porarily breaks sequential flow to execute instructions from
another part of program memory.

• Jumps. Program flow is permanently transferred to another part of
program memory.

• Interrupts. A runtime event (generally not an instruction) triggers
the program sequencer to branch to interrupt-handling
subroutines.

• Idle. An instruction that causes the core to stop executing further
instructions and hold its current state until an interrupt occurs.
Then, after the processor services the interrupt, the sequencer
resumes normal program execution.

Instruction Pipeline

3-2 ADSP-2136x SHARC Processor Programming Reference

The sequencer uses the blocks shown in Figure 3-1 to execute instruc-
tions. The sequencer’s address multiplexer selects the value of the next
fetch address from several possible sources. The fetched address enters the
instruction pipeline which is made up of the fetch registers, decode regis-
ter, and program counter (PC) register. These registers contain the 24-bit
addresses of the instructions currently being fetched, decoded, and exe-
cuted. The PC register, in conjunction with the PC stack register, stores
return addresses and top-of-loop addresses. All addresses generated by the
sequencer are 24-bit addresses.

The sequencer handles a series of operations, described in these sections:

• “Instruction Pipeline” on page 3-2

• “Instruction Cache” on page 3-8

• “Branches and Sequencing” on page 3-26

• “Stacks and Sequencing” on page 3-35

• “Loops and Sequencing” on page 3-37

• “Conditional Sequencing” on page 3-40

• “SIMD Mode and Sequencing” on page 3-58

• “Interrupts and Sequencing” on page 3-68

Refer to Figure 3-1 for a description of how each of the functional blocks
are related.

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor fetches
and executes instructions from memory in sequential order.

ADSP-2136x SHARC Processor Programming Reference 3-3

Program Sequencer

To achieve a high execution rate while maintaining a simple programming
mode, the processor employs a five stage pipeline to process instructions:

1. Fetch1 stage. In this stage, the appropriate instruction address is
chosen from various sources and driven out to memory.

2. Fetch2 stage. This stage is the data phase of the instruction fetch
memory access wherein the data address generator (DAG) performs
some amount of pre-decode.

Figure 3-1. Program Sequencer Block Diagram

INTERRUPT
CONTROLLER

PC STACK

CACHE

LOOP CONTROL
CONDITION

LOGIC

CONDITION
FLAGS

PM ADDRESS BUS PM DATA BUS

32

24

INSTRUCTION PIPELINE

OTHER
INTERRUPTS

NEXT ADDRESS MULTIPLEXER

Instruction Pipeline

3-4 ADSP-2136x SHARC Processor Programming Reference

3. Decode stage. The instruction is decoded and various conditions
that control the instruction execution are generated. The main
active units in this stage are the DAGs which generate the addresses
for various types of functions like data accesses (load/store) and
indirect branches.

4. Address stage. The addresses generated by the DAGs in the previ-
ous stage are driven to the memory through memory interface
logic. The addresses for the branch operation are made available to
the fetch unit.

5. Execute stage. The operations specified in the instruction are exe-
cuted and the results written back to memory, or the destination
registers (for example DAG, universal, system or IOP registers).

In the sequential program flow, when one instruction is being executed,
the next four instructions that follow are being processed in the address,
decode, fetch2 and fetch1 stages of the instruction pipeline. Sequential
program flow usually has a throughput of one instruction per cycle.

Table 3-1 illustrates how the instructions starting at address n are pro-
cessed by the pipeline. While the instruction at address n is being
executed, the instruction n+1 is being processed in the address phase, n+2
in the decode phase, n+3 in the fetch2 phase and n+4 in the fetch1 phase.

Table 3-1. Pipelined Execution Cycles

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 n+2 n+3 n+4

Address n n+1 n+2 n+3 n+4 n+5

Decode n n+1 n+2 n+3 n+4 n+5 n+6

Fetch2 n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Fetch1 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

ADSP-2136x SHARC Processor Programming Reference 3-5

Program Sequencer

While sequential execution takes one core clock cycle per instruction,
nonsequential program flow can potentially reduce the instruction
throughput. Nonsequential program operations include:

• Memory conflicts

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Memory Conflicts
Memory conflicts occur when programs attempt to access the certain pro-
cessor resources simultaneously. A bus conflict occurs when an instruction
fetch and a data access are made on the same bus. A block conflict occurs
when multiple accesses are made to the same block in internal memory.
The following sections describe these memory conflicts in detail. For addi-
tional information, see “Memory and Internal Buses Block Diagram” on
page 5-6.

Bus Conflicts
A bus is comprised of two parts, the address bus and the data bus. Because
the bus can be accessed simultaneously by different sources (illustrated in
Figure 3-1 on page 3-3), there is a potential risk of bus conflicts.

A bus conflict occurs when the PM data bus, normally used to fetch an
instruction in each cycle, is used to fetch instruction and to access data.
Because of the five stage instruction pipeline, if an instruction at address n
uses the PM bus to access data it creates a conflict with the instruction
fetch at address n+3, assuming sequential executions.

Memory Conflicts

3-6 ADSP-2136x SHARC Processor Programming Reference

Note that the cache stores the fetched instruction (n+3), not the instruc-
tion requiring the program memory data access.

When the processor first encounters a bus conflict, it must stall for one
cycle while the data is transferred, and then fetch the instruction in the
following cycle. To prevent the same delay from happening again, the pro-
cessor automatically writes the fetched instruction to the cache. The
sequencer checks the instruction cache on every data access using the PM
bus. If the instruction needed is in the cache, a cache hit occurs. The
instruction fetch from the cache happens in parallel with the program
memory data access, without incurring a delay.

If the instruction needed is not in the cache, a cache miss occurs, and the
instruction fetch (from memory) takes place in the cycle following the
program memory data access, incurring one cycle of overhead. The
fetched instruction is loaded into the cache (if the cache is enabled and
not frozen), so that it is available the next time the same instruction (that
requires program memory data) is executed.

Figure 3-2 shows a block diagram of the 2-way set associative instruction
cache. The cache holds 32 instruction-address pairs. These pairs (or cache
entries) are arranged into 16 (15-0) cache sets according to the four least
significant bits (3-0) of their address. The two entries in each set (entry 0
and entry 1) have a valid bit, indicating whether the entry contains a valid
instruction. The least recently used (LRU) bit for each set indicates which
entry was not placed in the cache last (0=entry 0 and 1=entry 1).

The cache places instructions in entries according to the four LSBs of the
instruction’s address. When the sequencer checks for an instruction to
fetch from the cache, it uses the four address LSBs as an index to a cache
set. Within that set, the sequencer checks the addresses of the two entries
as it looks for the needed instruction. If the cache contains the instruction,
the sequencer uses the entry and updates the LRU bit (if necessary) to indi-
cate the entry did not contain the needed instruction.

ADSP-2136x SHARC Processor Programming Reference 3-7

Program Sequencer

When the cache does not contain a needed instruction, it loads a new
instruction and its address and places them in the least recently used entry
of the appropriate cache set. The cache then toggles the LRU bit, if
necessary.

Block Conflicts
A block conflict occurs when multiple data accesses are made to the same
block in memory from which the instructions are executed. This conflict
occurs when accesses to the same block occur in the same cycle by the PM
bus, the DM bus, and/or the IOP bus. In the first case, the instruction
takes two cycles to complete, with the data being accessed in the first cycle
and the instruction in the second. In the latter case, where a dual data
access is performed, the processor takes three cycles to complete the
instruction.

Block conflicts are not cached.

Figure 3-2. Instruction Cache Architecture

INSTRUCTIONS

SET
0

SET
1

SET
2

SET
13

SET
14

SET
15

ADDRESSES
BITS (23-4)

LRU
BIT

VALID
BIT

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ADDRESSES
BITS (3-0)

0000

0001

0010

1101

1110

1111

Instruction Cache

3-8 ADSP-2136x SHARC Processor Programming Reference

Instruction Cache
Usually, the sequencer fetches an instruction from memory on each cycle.
Occasionally, program memory bus conflicts prevent some of the data and
instructions from being fetched in a single cycle, as in the instruction
R0=PM(I8,1); because it uses the PM bus to fetch data (from the address
in I8). To alleviate these data flow conflicts, the processor has a 2-way set
associative instruction cache that caches instructions that cause these con-
flicts. This removes the need to fetch the offending instruction from
memory and frees both memory blocks and data buses for data accesses.
Except for enabling or disabling, the caches operation is completely auto-
matic and transparent, requiring no user intervention. For more
information, see “Using the Cache” on page 3-8.

Using the Cache
After a processor reset, the cache is cleared (it contains no instructions),
unfrozen, and enabled. From then on, the MODE2 register controls the
operating mode of the instruction cache as shown below.

• Cache disable. Bit 4 (CADIS) directs the sequencer to disable the
cache (if 1) or enable the cache (if 0).

• Cache freeze. Bit 19 (CAFRZ) directs the sequencer to freeze the
contents of the cache (if 1) or let new entries displace the entries in
the cache (if 0).

Table B-3 on page B-11 lists the bits in the MODE2 register.

Freezing the cache prevents any changes to its contents—a cache miss does
not result in a new instruction being stored in the cache. Disabling the
cache stops its operation completely—all instruction fetches conflicting
with program memory data accesses are delayed. These functions are
selected by the CADIS (cache enable/disable) and CAFRZ (cache freeze) bits
in the MODE2 register.

ADSP-2136x SHARC Processor Programming Reference 3-9

Program Sequencer

The following restrictions on cache usage should be noted.

• If the cache freeze bit of the MODE2 register is set by instruction n,
then this feature is effective from the n+2 instruction onwards.
This results from the effect latency of the MODE2 register.

• When a program changes the cache mode, an instruction contain-
ing a program memory data access must not be placed directly after
a cache enable or cache disable instruction. This is because the pro-
cessor must wait at least one cycle before executing the PM data
access. A program should have a NOP (no operation) or other
non-conflicting instruction inserted after the cache enable or cache
disable instruction.

• The FLUSH CACHE instruction has a latency of one cycle. Using an
instruction that contains a PM data access immediately following a
FLUSH CACHE instruction is prohibited.

Optimizing Cache Usage
Cache operation is usually efficient and requires no intervention. How-
ever, certain ordering in the sequence of instructions can work against the
cache’s architecture, reducing its efficiency. When the order of PM data
accesses and instruction fetches continuously displaces cache entries and
loads new entries, the cache does not operate efficiently. Rearranging the
order of these instructions remedies this inefficiency. Optionally, a
dummy PM read can be inserted to trigger the cache.

When a cache miss occurs, the needed instruction is loaded into the cache
so that if the same instruction is needed again, it will be available (that is,
a cache hit will occur). However, if another instruction whose address is
mapped to the same set displaces this instruction and loads a new instruc-
tion, a cache miss occurs. The LRU bits help to reduce the occurrence of a
cache miss since at least two other instructions, mapped to the same set,
are needed before an instruction is displaced. If three instructions mapped

Instruction Cache

3-10 ADSP-2136x SHARC Processor Programming Reference

to the same set are all needed repeatedly, cache efficiency (that is, the
cache hit rate) can go to zero. To keep this from happening, move one or
more instructions to a new address that is mapped to a different cache set.

An example of inefficient cache code appears in Table 3-2. The PM bus
data access at address 0x101 in the loop, OUTER, causes a bus conflict and
also causes the cache to load the instruction being fetched at 0x104 (into
set 4). Each time the program calls the subroutine, INNER, the program
memory data accesses at 0x201 and 0x211 displace the instruction at
0x104 by loading the instructions at 0x204 and 0x214 (also into set 4). If
the program rarely calls the INNER subroutine during the OUTER loop execu-
tion, the repeated cache loads do not greatly influence performance. If the
program frequently calls the subroutine while in the loop, cache ineffi-
ciency has a noticeable effect on performance. To improve cache efficiency
on this code (if for instance, execution of the OUTER instruction of the loop
is time critical), rearrange the order of some instructions. Moving the sub-
routine call up one location (starting at 0x201) also works. By using that
order, the two cached instructions end up in cache set 5, instead of set 4.

Table 3-2. Cache Inefficient Code

Address Instruction

0x0100 lcntr = 1024, do Outer until LCE;

0x0101 r0 = dm(i0,m0), pm(i8,m8) = f3;

0x0102 f2 = float r1;

0x0103 f3 = f2 * f2;

0x0104 if eq call (Inner);

0x0105 r1=r0-r15;

0x0106 Outer: f3 = f3 + f4;

0x0107 pm(i8,m8) = f3;

...

0x0200 Inner: r1 = R13;

ADSP-2136x SHARC Processor Programming Reference 3-11

Program Sequencer

Instruction Pipeline Stalls
The ADSP-2136x processors use instruction pipeline stalls to ensure cor-
rect and efficient program execution. Stalls are used in the following
situations.

• “Structural Hazard Stalls” on page 3-12 are incurred when differ-
ent instructions at various stages of the instruction pipeline
attempt to use the same processor resources simultaneously.

• “Data and Control Hazard Stalls” on page 3-14 are incurred when
an instruction attempts to read a value from a register or from a
condition flag, that has been updated by an earlier instruction,
before the value becomes available.

• Stalls are incurred to achieve high performance, when the processor
executes a certain sequence of instructions.

• Stalls are incurred to retain effect latency compatible with earlier
SHARC processors when the processor executes a certain sequence
of instructions.

The following sections describe the various kinds of stalls in detail.

0x0201 r14 = pm(i9,m9);

...

0x0211 pm(i9,m9) = r12;

...

0x021F rts;

Table 3-2. Cache Inefficient Code (Cont’d)

Address Instruction

Instruction Pipeline Stalls

3-12 ADSP-2136x SHARC Processor Programming Reference

Structural Hazard Stalls
In general, structural stalls occur when different instructions at various
stages of the instruction pipeline attempt to use the same resource at the
same time during the same cycle. The following sections describe varia-
tions of structural stalls and provide examples.

Data Access and Instruction Fetch on the PM Bus

In the instruction PM(Ip,Mq) = UREG, the data access over the PM bus by
the conflicts with the fetch of instruction n+2 (shown in Table 3-3). In
this case the data access completes first. This is true of any program mem-
ory data access type instruction. This stall occurs only when the
instruction to be fetched is not cached.

Data Access Over the DM and PM Buses

Table 3-4 shows a data access over the DM bus to a particular block of
memory and a data access over the PM bus to the same block. These two
operations conflict over the single read or write port of the given block. In
this example, the data access instruction over the DM bus completes first.
The table assumes that the instruction n+2 had previously been cached.

Table 3-3. PM Access Conflict

Cycles 1 2 3

Execute pm(Ip, Mq) = ureg

Address pm(Ip, Mq) = ureg n

Decode n n+1

Fetch2 n+1 n+2

Fetch1 n+2 n+2 n+3

1. Cycle1: n+2 Instruction fetch postponed
2. Cycle2: Stall Cycle

ADSP-2136x SHARC Processor Programming Reference 3-13

Program Sequencer

Update and Load Index Register

Updating an I (index) register due to post-modify addressing and loading
of a register in the same DAG. The two operations in the same instruction
conflicts over the single write port of DAG. The assembler does not allow
this type of instruction.

Reading I, M, B, L Registers

Reading an I, B, M or L register in the DAG for pre- or post-modify
addressing and reading a register from the same DAG for a store opera-
tion. These two operations in the same instruction conflict over the single
read port of DAG. The assembler does not allow this type of instruction.

DMA Block Conflict with PM or DM Access

A direct memory access (DMA) by a peripheral such as the parallel port to
a particular block of memory and a data/instruction access by the
sequencer over the DM or PM bus to the same block of memory. The
DMA instruction completes first to ensure that no data overflow or under-
flow takes place in the processor’s peripherals.

Table 3-4. PM and DM Access Conflicts

Cycles 1 2 3

Execute dm(Ia, Mb)=R1,
pm(Ic, Md)=R2

dm(Ia, Mb)=R1,
pm(Ic, Md)=R2

Address dm(Ia, Mb)=R1,
pm(Ic, Md)=R2

n

Decode n n+1

Fetch2 n+1 n+2

Fetch1 n+2 n+3

Memory access on dm completes first.
1. Cycle2: Stall Cycle

Instruction Pipeline Stalls

3-14 ADSP-2136x SHARC Processor Programming Reference

Data and Control Hazard Stalls
In general, data and control hazard stalls occur when a register or a condi-
tion flag is being updated by an instruction and a subsequent instruction
attempts to read the value before the update has actually taken place.

When this occurs, the instruction that is to update the value and the fol-
lowing instruction, (if not dependent on the new value), are allowed to
execute. If the following instruction needs the updated value, then that
instruction and the instructions that follow it in the earlier stages of the
instruction pipeline are stalled.

The conditions under which data/control hazard stalls occur are described
in the following sections.

Address Generation

Stalls occur when a register in a DAG is loaded and either of the two fol-
lowing instructions (shown in the code examples below) attempts to
generate an address based on that register. This is because address genera-
tion requires that the value of the related DAG register is read in the
decode stage, while any other register load completes in the execution
stage of the pipeline. Note that registers can be loaded either by explicit or
implicit references (such as in a long word load).

M0 = 1;

DM(I2, M0) = R1; /* stalls for 2 cycles */

In the example shown in Table 3-5, M0 is written back at the end of the
execution stage, while the DM access instruction reads M0 in the decode
stage to generate the address. The first instruction is allowed to execute
normally, while the remaining instructions are delayed by two cycles.

ADSP-2136x SHARC Processor Programming Reference 3-15

Program Sequencer

Also in Table 3-5, the data memory instruction is stalled if the preceding
instruction is a load of the I2, B2, or L2 registers, regardless of whether cir-
cular buffering is enabled or not.

In the code example below and Table 3-6, an unrelated instruction is
introduced after a write instruction to the DAG. In this case the processor
stalls for one cycle only.

M0=1;

R0=0x8 /* any unrelated instruction */

Dm(I2,M0)=R1 /* Stalls for one cycle */

Table 3-5. Indirect Access One Cycle After DAG Register Load

Cycles 1 2 3 4 5

Execute M0 = 1

Address M0 = 1 DM (I2, M0) = R1;

Decode M0 = 1 DM (I2, M0) = R1; n

Fetch2 DM (I2, M0) = R1; n n+1

Fetch1 n n+1 n+2

1. Cycle2: Stall cycle
2. Cycle3: Stall cycle

Table 3-6. Indirect Access Two Cycles After DAG Register Load

Cycles 1 2 3 4 5

Execute M0 = 1 R0 = 0x8; DM (I2, M0) = R1;

Address M0 = 1 R0 = 0x8; DM (I2, M0) = R1; n

Decode R0 = 0x8; DM (I2, M0) = R1; n n+1

Fetch2 DM (I2, M0) = R1; n n+1 n+2

Fetch1 n n+1 n+2 n+3

1. Cycle2: Stall cycle

Instruction Pipeline Stalls

3-16 ADSP-2136x SHARC Processor Programming Reference

Branch

A data stall can also occur when a register in a DAG is loaded and either of
the following two instructions shown in the code examples below attempts
to generate an indirect target address based on that DAG register for a
branch such as a JUMP or CALL. This happens because the address genera-
tion requires the values of the related DAG register to be read in the
decode stage, while the load of any register completes in the execute stage
of the pipeline. The JUMP or CALL itself has three cycles of overhead as
described in “Branches and Sequencing” on page 3-26.

M8=1;

JUMP (M8,I9); /* stalls for two cycles */

In the example shown in Table 3-7, M8 is written back at the end of the
execute stage of the pipeline, while the following JUMP (or CALL) instruc-
tion has to read M8 in the decode stage to generate the target address. The
first instruction is allowed to complete normally, while all following
instructions are stalled for two cycles.

Table 3-7. Indirect Branch One Cycle After DAG Register Load

Cycles 1 2 3 4 5 6 7 8 9

Execute M8 = 1 jump
(M8, I9)

nop nop nop

Address M8 = 1 jump
(M8, I9)

nop nop nop j

Decode M8 = 1 jump
(M8, I9)

n→
nop

n+1→
nop

n+2→
nop

j j+1

Fetch2 jump
(M8, I9)

n n+1 n+2 j j+1 j+2

Fetch1 n n+1 n+2 j j+1 j+2 j+3

J = Branch address
1. Cycle2: Stall cycle
2. Cycle3: Stall cycle
3. Cycle4: I9 + M8 computed

ADSP-2136x SHARC Processor Programming Reference 3-17

Program Sequencer

In the following code example, an unrelated instruction is inserted
between the write instruction to the DAG register and the jump instruc-
tion requiring address generation. In this instance, the pipeline stalls for
only one cycle.

M8=1;

R0=0x8; /* any unrelated instruction */

JUMP (M0,I9); /* stalls for one cycle */

Compute with Post-modify

A control hazard stall occurs when the sequence of three instructions
shown below is executed. The first may be a compute instruction, which
directly modifies the ASTATx, ASTATy or FLAGS registers, either through an
explicit write to the register or through bit manipulation instruction. The
second instruction contains a conditional post-modify address generation.
The third instruction is either an address generation operation using the
same index register or a read of that index register.

The example code and Table 3-8 below shows that when this sequence of
instructions is executed, and the third instruction is in the decode stage of
the pipeline, the pipeline is stalled for two cycles.

R0=PASS R0; /* ALU instruction, setting a condition

 flag */

IF EQ DM(I1,M0)=R15 /* conditional post-modify addressing */

DM(I1,0)=R14; /* address generation using the same I

 register stalls for two cycles */

Instruction Pipeline Stalls

3-18 ADSP-2136x SHARC Processor Programming Reference

When the conditional post-modify instruction is either preceded or fol-
lowed by instructions other than those involving address generation using
the same I register, the last instruction stalls the pipeline for one cycle.
When the conditional post-modify instruction is either preceded or fol-
lowed by two or more such unrelated instructions, the pipeline is not
stalled.

Note that a conditional instruction based on an ALU generated flag has a
dependency on an ALU operation only. This also holds true in the case of
multiplier flags and multiplier operations or a BTF flag and a BIT TST
instruction. This is valid for any such kind of dependency.

Also note that when this kind of instruction sequence has other reasons to
stall the pipeline, all the stalls arising out of different kinds of dependen-
cies may not merge and some stalls appear as redundant stall cycles.

A JUMP With a LA Modifier Is Used To Abort a Loop

A JUMP(LA) stalls the instruction pipeline for one cycle when it is in the
address stage of the instruction pipeline.

Loops

A one cycle stall is incurred when a RTS (return from subroutine) or RTI
(return from interrupt) instruction causes the sequencer to return to the
last instruction of a loop instruction, and the RTI/RTS is in the address

Table 3-8. Indirect Branch Two Cycles After DAG Register Load

Cycles 1 2 3 4 5 6

Execute n n+1 n+2

Address n n+1 n+2 n+3

Decode n+1 n+2 n+3 n+4

Fetch2 n+2 n+3 n+4 n+5

Fetch1 n+3 n+4 n+5 n+6

1. Cycle2: Stall cycle
2. Cycle3: Stall cycle

ADSP-2136x SHARC Processor Programming Reference 3-19

Program Sequencer

stage of the instruction pipeline. This is to avoid the coincidence of two
implicit operations of the PCSTK—one due to the RTI/RTS instruction and
the other due to the possible termination of the loop. The pipeline stalls
so that the pop operation from the RTI/RTS is executed first.

Stalls in Conditional Branches
There are three cases related to conditional branches, where the pipeline is
stalled for one or more cycles.

1. A control hazard stall occurs when a conditional branch follows a
compute or a bit manipulation instruction as shown in the code
example and Table 3-9. This occurs because the branch is in the
address stage of the pipeline, while the compute and bit manipula-
tion instructions update condition flags at the end of execute
phase. (An RTS has three additional overhead cycles. See “Branches
and Sequencing” on page 3-26.)

R0=R0-1;

If ne RTS; /* stalls pipe for a cycle */

Table 3-9. Conditional Branch Stall

Cycles 1 2 3 4 5 6 7 8

Execute R0 =
R0–1

if ne RTS nop nop nop r

Address R0 =
R0–1

if ne
RTS

nop nop nop r r+1

Decode if ne
RTS

n→
nop

n+1→
nop

n+2→
nop

r r+1 r+2

Fetch2 n n+1 n+2 r r+1 r+2 r+3

Fetch1 n+1 n+2 r r+1 r+2 r+3 r+4

r is the instruction branch address
1. Cycle2: Stall cycle
2. Cycle4: r popped from PC stack

Instruction Pipeline Stalls

3-20 ADSP-2136x SHARC Processor Programming Reference

2. If the compute involves the multiplier unit and the condition is
based on a multiplier flag (as shown in the code sample below), and
the conditional branch is in decode stage of the pipeline, the pipe-
line is stalled for an additional cycle.

R0=R0*R1(ssi);

IF MV CALL (_MultOverFlow); /* stalls for two cycles in

decode */

3. The pipeline stalls for two cycles when a branch instruction condi-
tional on NOT LCE (loop counter not expired) is in the decode stage
and is immediately followed by any instruction involving a change
in an LCE (loop counter expired) condition, due to the execution of
a DO/UNTIL, POP/PUSH, JUMP(LA) or load of the CURLCNTR register. A
one cycle stall occurs when the instruction is an operation other
than a branch.

Note that if the CURLCNTR register changes due to the normal
loop-back operation within a counter based loop, the pipeline is
not stalled for any branch instruction conditional on the NOT LCE
condition.

Address Generation Using I Registers After a CJUMP

The following code example shows a two cycle data hazard stall that
occurs when DAG1 attempts to generate addresses based on the I6 register
or when either or both of the I6 or I7 registers are used as a source of some
data transfer operation immediately after a CJUMP instruction. This occurs
because the CJUMP instruction modifies the I6 register.

Example 1:

CJUMP(_SUB1)(DB); /* executes R2=I6,I6=I7, jump(_sub1) (db) */

DM(I6,M0)=R2; /*stalls for two cycles */

ADSP-2136x SHARC Processor Programming Reference 3-21

Program Sequencer

Example 2:

CJUMP(_SUB1)(DB); /* executes R2=I6,I6=I7, jump(_sub1) (db) */

R2=I7; /* stalls for two cycles */

If there is an unrelated instruction before the second instruction, the pipe-
line stalls for one cycle only. Note that an address generation operation
using register I7 immediately after a CJUMP instruction does not stall the
pipeline.

Note: CJUMP is intended to be used by compiler only. Normally the
compiler uses the following sequence of instructions when calling a
subroutine, which does not stall the pipeline.

CJUMP (_SUB1) (DB); /* executes R2=I6, I6=I7 */

jump(_sub1)(db)

DM(I7,M0)=R2; /* stores previous I6 */

DM(I7,M0)=PC; /* stores return_address-1 */

RFRAME Instruction

A data hazard stall occurs when DAG1 attempts to generate addresses
based on the I6 or I7 registers or when any or both of the I6 or I7 registers
are used as a source of some data transfer operation immediately after a
RFRAME instruction. This occurs because RFRAME modifies the I6 and I7
registers. In this situation, the pipeline is stalled for two cycles.

RFRAME; /* executes I7=I6, I6=dm(0,I7 */

DM(I6,M0)=R2 /* stalls for two cycles */

In a program where there is an unrelated instruction before the DM instruc-
tion, then the pipeline stalls for one cycle only.

The RFRAME instruction is only used by the compiler.

Latency

3-22 ADSP-2136x SHARC Processor Programming Reference

Other Instructions

To achieve high performance, the processor is stalled when it executes one
of three specific sequences of instructions. The different conditions under
which such cases occur are shown below:

1. When both of the operands of the multiplier are produced as a
result of either a multiplier or an ALU operation in the immediate
preceding instruction, the pipeline is stalled for one cycle as shown
in the following example.

F0=F0+F4, F1=F0-F4;

F0=F0*F1;

/* stalls a cycle since both the operands are produced by

ALU in the immediately preceding instruction */

2. When the length of the counter based loop is one, two or four
instructions, the pipeline is stalled by one cycle after the DO/UNTIL
instruction.

3. When a compute operation involving any fixed-point operand reg-
ister follows a floating point multiply operation, and the
instruction involving the fixed-point register is in the decode stage
of the pipeline, the pipeline stalls for one cycle as shown in the fol-
lowing example. Note that the actual register used for the
operation is not relevant.

F0 = F0*F4;

F5 = FLOAT R1; /* stalls the pipe when in decode */

Latency
Writes to some of the system registers do not take effect immediately. For
example, if a program writes to the MODE1 register in order to set ALU sat-
uration mode, any ALU operation in the instruction immediately
following is not effected. The saturation mode takes effect in the second

ADSP-2136x SHARC Processor Programming Reference 3-23

Program Sequencer

instruction following the instruction performing the write to MODE1. This
is referred to as an effect latency of one cycle. Also, some registers are not
updated on the cycle immediately following a write. It takes an extra cycle
before a read of the register returns the updated value. This is referred to
as a read latency of one cycle.

Note that the effect latency and read latency are counted in a number of
processor cycles rather than instruction cycles. Therefore, there may be sit-
uations when the effect latency may not be observed, such as when the
pipeline stalls or when an interrupt breaks the normal sequence of instruc-
tions. Here, the effect latency and the read latency are interpreted as the
maximum number of instructions, which is unaffected by the new settings
after a write to one register.

Table 3-10 and Table 3-11 summarize the number of extra cycles
(latency) for a write to take effect (effect latency) and for a new value to
appear in the register (read latency). A 0 (zero) indicates that the write
takes effect or appears in the register on the next cycle after the write
instruction is executed, and a 1 indicates one extra cycle.

Table 3-10. Sequencer Registers Read and Effect Latencies

Register Contents Bits Read Latency Effect Latency

FADDR Fetch address 24 -- --

DADDR Decode address 24 -- --

PC Execute address 24 -- --

PCSTK Top of PC stack 24 0 0

PCSTKP PC stack pointer 5 1 1

LADDER Top of loop address stack 32 0 0

CURLCNTR Top of loop count stack
(current loop count)

32 0 0

LCNTR Loop count for next DO
UNTIL loop

32 0 0

Latency

3-24 ADSP-2136x SHARC Processor Programming Reference

The following are examples provide more detail on latency.

• The contents of the MODE1 and MODE2 registers are used in the
decode stage of the instruction pipeline. To maintain the same
effect latency of one cycle, a stall cycle is always added after a write
to the MODE1 or MODE2 registers. A stall is also introduced when the
contents of the MODE1 and MODE2 registers are modified through a
bit manipulation instruction. The MODE1 register value also changes
when the PUSH STS or POP STS instructions are executed or when

Table 3-11. System Registers Read and Effect Latencies

Register Contents Bits Read Latency Effect Latency

MODE1 Mode control bits 32 0 1

MODE2 Mode control bits 32 0 1

IRPTL Interrupt latch 32 0 1

IMASK Interrupt mask 32 0 1

IMASKP Interrupt mask pointer
(for nesting)

32 1 1

MMASK Mode mask 32 0 1

FLAGS Flag inputs 32 0 1

LIRPTL Interrupt latch/mask 32 0 1

ASTATX Arithmetic status flags 32 0 1

ASTATY Arithmetic status flags 32 0 1

STKYX Sticky status flags 32 0 1

STKYY Sticky status flags 32 0 1

USTAT1 User-defined status flags 32 0 0

USTAT2 User-defined status flags 32 0 0

USTAT3 User-defined status flags 32 0 0

USTAT4 User-defined status flags 32 0 0

ADSP-2136x SHARC Processor Programming Reference 3-25

Program Sequencer

the sequencer branches to, or returns from an ISR (interrupt ser-
vice routine) which involves a PUSH/POP of the stack. This results in
a one cycle stall.

MODE1=0x1; /* enable bit reverse addressing for I8 */

PM(I8,M8)=R14; /* stalls for a cycle, but unaffected by

 mode setting */

PM(I8,M8)=R14; /* performs bit reversed mode of

 addressing */

• When the contents of the ASTAT registers are updated by any opera-
tion other than a compute operation, the following instruction
stalls for a cycle, if it performs a conditional branch and the condi-
tion is anything other than NOT LCE. An example is when ASTAT is
explicitly loaded or when the sequencer branches to, or returns
from an ISR involving a PUSH/POP of the status stack.

• The effect latency in the case of a FLAGS register is felt when a con-
ditional instruction dependent on the FLAGS register values is
executed after modifications to the FLAGS register.

BIT SET FLAGS 0x1; /* set FLAG0 */

IF FLAG0_IN R0=R0+1; /* conditional compute – aborts */

IF FLAG0_IN R0=R0+1; /* conditional compute – executes */

A stall cycle is introduced after a write to the FLAGS register, only if
a conditional branch dependent on the FLAGS register settings fol-
lows it as the second instruction.

BIT SET FLAGS 0x1; /* set FLAG0 */

IF FLAG0_IN R0=R0+1; /* unaffected by prior

 instruction-aborts */

IF FLAG0_IN RTS; /* stalls a cycle and executes RTS */

Branches and Sequencing

3-26 ADSP-2136x SHARC Processor Programming Reference

• A stall cycle results after a write to the ASTATx or ASTATy registers,
only if a conditional branch follows it as the second instruction.

ASTATX = 0x1; /* set AZ flag */

IF NE JUMP(SOMEWHERE); /* unaffected by prior

 instruction–aborts */

IF NE RTS; /* stalls a cycle and executes RTS */

• The SYSCTL and BRKCTL registers are memory-mapped registers that
serve as control registers. The effect latency for these registers is
one cycle and the pipeline is stalled for one cycle following a write
to these registers.

Branches and Sequencing
One type of non-sequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction moves execu-
tion to a location other than the next sequential address. For descriptions
on how to use JUMP and CALL instructions, see “Instruction Set” in
Chapter 8, Instruction Set, and “Computations Reference” in Chapter 9,
Computations Reference. Briefly, these instructions operate as follows.

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically pushes the return address (the next sequential
address after the CALL instruction) onto the PC stack. This push
makes the address available for the CALL instruction’s matching
return instruction, (RTS) in the subroutine, allowing an easy return
from the subroutine.

• A RETURN instruction causes the sequencer to fetch the instruction
at the return address, which is stored at the top of the PC stack.
The two types of return instructions are return from subroutine

ADSP-2136x SHARC Processor Programming Reference 3-27

Program Sequencer

(RTS) and return from interrupt (RTI). While the RTS pops only the
return address off the PC stack, the RTI pops the return address
and:

a. Clears the interrupt’s bit in the interrupt latch register
(IRPTL) and the interrupt mask pointer register (IMASKP).
This allows another interrupt to be latched in the IRPTL reg-
ister and the interrupt mask pointer (IMASKP) register. For
more information, see “Interrupt Registers” in the
ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21362/3/4/5/6 Processors and the ADSP-2136x
SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors.

b. Pops the status stack if the ASTATx/y and MODE1 status regis-
ters have been pushed for interrupts IRQ2-0 or timers.

There are a number of parameters that can be specified for branching
instructions:

• JUMP and CALL instructions can be conditional. The program
sequencer can evaluate the status conditions to decide whether or
not to execute a branch. If no condition is specified, the branch is
always taken. For more information on these conditions, see
“Interrupts and Sequencing” on page 3-68.

• JUMP and CALL instructions can be immediate or delayed. Because
of the instruction pipeline, an immediate branch incurs three lost
(overhead) cycles. As shown in Table 3-12 and Table 3-13, the
processor aborts the three instructions after the branch, which are
in the fetch1, fetch2, and decode stages, while instructions are
fetched from the branched address. A delayed branch reduces the
overhead to one cycle by allowing the two instructions following
the branch to propagate through the instruction pipeline and exe-
cute. For more information, see “Delayed Branches” on page 3-29.

Branches and Sequencing

3-28 ADSP-2136x SHARC Processor Programming Reference

• JUMP instructions that appear within a loop or within an interrupt
service routine have additional options. For information on the
loop abort (LA) option, see “Loops and Sequencing” on page 3-37.
For information on the loop reentry (LR) option, see “Restrictions
on Ending Loops” on page 3-43. For information on the clear
interrupt (CI) option, see “Reusing Interrupts” on page 3-81.

Branches can be direct or indirect. The difference is that with direct
branches, the sequencer generates the address while for indirect branches,
the PM data address generator (DAG2) produces the address.

Direct branches are JUMP or CALL instructions that use an absolute—not
changing at run time—address (such as a program label) or use a PC-rela-
tive address. Some instruction examples that cause a direct branch are:

CALL fft1024; /* Where fft1024 is an address label */

JUMP (pc,10); /* Where (pc,10) is 1O-relative addresses after

 the executing instruction */

Indirect branches are JUMP or CALL instructions that use a dynamic address
that comes from the PM data address generator (DAG2). For more informa-
tion on the data address generator, see “Data Address Generators” on
page 4-1. Some instruction examples that cause an indirect branch are:

JUMP (M8, I12); /* where (M8, I12) are DAG2 registers */

CALL (M9, I13); /* where (M9, I13) are DAG2 registers */

Conditional Branches
The sequencer supports conditional branches. Conditional branches are
JUMP or CALL instructions whose execution is based on testing an IF condi-
tion. For more information on condition types in IF condition
instructions, see “Conditional Sequencing” on page 3-40. Note that the
processor’s single-instruction, multiple-data (SIMD) mode influences the
execution of conditional branches. For more information, see “Summary”
on page 3-83.

ADSP-2136x SHARC Processor Programming Reference 3-29

Program Sequencer

Delayed Branches
The instruction pipeline influences how the sequencer handles delayed
branches. For immediate branches in which JUMP and CALL instructions are
not specified as delayed branches (DB), three instruction cycles are lost
(NOP) as the instruction pipeline empties and refills with instructions from
the new branch.

As shown in Table 3-12 and Table 3-13, the processor aborts the three
instructions after the branch, which are in the fetch1, fetch2 and decode
stages. For a CALL instruction, the address of the instruction after the CALL
is the return address. During the three lost (no-operation) cycles, the first
instruction at the branch address passes through the fetch2, decode and
address phases of the instruction pipeline

In the tables that follow, shading indicates aborted instructions, which are
followed by NOP instructions.

Table 3-12. Pipelined Execution Cycles for Immediate Branch
(Jump/Call)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n nop nop nop j

Address n–1 n nop nop nop j j+1

Decode n n+1→nop n+2→nop n+3→nop j j+1 j+2

Fetch2 n+1 n+2 n+3 j j+1 j+2 j+3

Fetch1 n+2 n+3 j j+1 j+2 j+3 j+4

n is the branching instruction and j is the instruction branch address
1. Cycle2: n+1 suppressed
2. Cycle3: n+2 suppressed and for call, n+1 pushed on, to PC stack
3. Cycle4: n+3 suppressed

Branches and Sequencing

3-30 ADSP-2136x SHARC Processor Programming Reference

Table 3-13. Pipelined Execution Cycles for Immediate Branch
(Return)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n nop nop nop r

Address n–1 n nop nop nop r r+1

Decode n n+1→nop n+2→nop n+3→nop r r+1 r+2

Fetch2 n+1 n+2 n+3 r r+1 r+2 r+3

Fetch1 n+2 n+3 r r+1 r+2 r+3 r+4

n is the branching instruction and r is the instruction at the return address
1. Cycle2: n+1 suppressed
2. Cycle3: n+2 suppressed and r popped from PC stack
3. Cycle4: n+3 suppressed

Table 3-14. Pipelined Execution Cycles for Delayed Branch
(JUMP or Call)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n n+1 n+2 nop j

Address n–1 n n+1 n+2 nop j j+1

Decode n n+1 n+2 n+3→nop j j+1 j+2

Fetch2 n+1 n+2 n+3 j j+1 j+2 j+3

Fetch1 n+2 n+3 j j+1 j+2 j+3 j+4

n is the branching instruction and j is the instruction branch address
1. Cycle3: For call n+3 pushed on the PC stack
2. Cycle4: n+3 suppressed

Table 3-15. Pipelined Execution Cycles for Delayed Branch
(Return)

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 n n+1 n+2 nop r

Address n–1 n n+1 n+2 nop r r+1

Decode n n+1 n+2 n+3→nop r r+1 r+2

Fetch2 n+1 n+2 n+3 r r+1 r+2 r+3

Fetch1 n+2 n+3 r r+1 r+2 r+3 r+4

n is the branching instruction and r is the instruction at the return address
1. Cycle3: r popped from PC stack
2. Cycle4: n+3 suppressed

ADSP-2136x SHARC Processor Programming Reference 3-31

Program Sequencer

In JUMP and CALL instructions that use the delayed branch (DB) modifier,
one instruction cycle is lost in the instruction pipeline. This is because the
processor executes the two instructions after the branch and the third is
aborted while the instruction pipeline fills with instructions from the new
location. This is shown in the sample code below.

As shown in Table 3-14 and Table 3-15, the processor executes the two
instructions after the branch and the third is aborted, while the instruc-
tion at the branch address is being processed at the fetch2, decode and
address phases of the instruction pipeline. In the case of a CALL instruc-
tion, the return address is the third address after the branch instruction.
While delayed branches use the instruction pipeline more efficiently than
immediate branches, delayed branch code can be harder to implement
because of the instructions between the branch instruction and the actual
branch. This is described in more detail in “Restrictions and Limitations
When Using Delayed Branches” on page 3-32.

Delayed branches and the instruction pipeline also influence interrupt
processing. Because the delayed branch instruction and the two instruc-
tions that follow it must always be executed sequentially, the processor
does not immediately process an interrupt that occurs between a delayed
branch instruction and either of the two instructions that follow. Any
interrupt that occurs during these instructions is latched, but is not pro-
cessed until the branch is complete.

This may be useful when two instructions must execute atomically (with-
out interruption), such as when working with semaphores. In the
following example, instruction 2 immediately follows instruction 1 in all
occasions:

jump (pc, 3) (db):

instruction 1;

instruction 2;

Branches and Sequencing

3-32 ADSP-2136x SHARC Processor Programming Reference

Note that during a delayed branch, a program can read the PC stack regis-
ter or PC stack pointer register. This read will show the return address on
the PC stack has already been pushed or popped, even though the branch
has not occurred yet.

Restrictions and Limitations When Using Delayed Branches

Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it
must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be any of those described in the fol-
lowing five sections.

Development software for the ADSP-2136x processor should
always flag the operations described in the next five sections as code
errors in the two locations after a delayed branch instruction.

Normally it is not valid to use two conditional instructions using the (DB)
option following each other. But the execution is allowed when these
instructions are mutually exclusive:

If gt jump (PC, 7) (db);

If le jump (pc, 11) (db);

Other Jumps, or Calls With RTI, RTS

These instructions cannot be used when they follow a delayed branch
instruction. This is shown in the following code that uses the JUMP
instruction.

jump foo(db);

jump my(db);

r0=r0+r1;

r1=r1+r2;

ADSP-2136x SHARC Processor Programming Reference 3-33

Program Sequencer

In this case, the delayed branch instruction r1=r1+r2, is not executed.
Further, the control jumps to my instead of foo, where the delayed branch
instruction is the execution of foo.

The exception is for the JUMP instruction, which applies for the mutually
exclusive conditions EQ (equal), and NE (not equal). If the first EQ con-
dition evaluates true, then the NE conditional jump has no meaning and
is the same as a NOP instruction. Code samples for these conditions are:

if eq jump label1 (db);

if ne jump label1 (db);

nop;

nop;

Pushes or Pops of the PC Stack

In this case a push of the PC stack in a delayed branch is followed by a
pop. If a value is pushed in the delayed branch of a call, it is first popped
in the called subroutine. This is followed by an RTS instruction.

call foo (db);

push PCSTK;

nop; /* second push due to PCSTK */

foo; /* first push because of call */

This example shows that when a program pushes the PCSTK during a
delayed slot, the PC stack pointer is pushed onto the PCSTK.

The following instructions are executed prior to executing the RTS.

pop PCSTK;

RTS (db);

nop;

nop;

Branches and Sequencing

3-34 ADSP-2136x SHARC Processor Programming Reference

If pushing the PC stack, a stack pop must be performed first, followed by
an RTS instruction. If a value is popped inside a delayed branch, whatever
subroutine return address is pushed is popped back, which is not allowed.

Manipulation of these stacks by using PUSH/POP instructions and
explicit writes to these stacks may affect the correct functioning of
the loop.

Writes to the PC Stack or PC Stack Pointer

The following two situations may arise when programs attempt to write to
the PC stack inside a delayed branch.

1. If programs write into the PC stack inside a jump, one of the fol-
lowing situations can occur.

a. The PC stack cannot hold a value that has already been
pushed onto the PC stack.

When the PC stack contains a value and a program writes
that same value onto the stack, the original value is over-
written by the new value and the original value becomes
corrupted.

b. The PC stack is empty.

Programs cannot write to the PC stack when they are inside
a jump. In this case the PC stack will remain empty.

2. Write to the PC stack inside a call.

If a program writes to the PC stack inside of a call, the value that is
pushed onto the PC stack because of that call is overwritten by the
value written onto the PC stack. Therefore, when a program

ADSP-2136x SHARC Processor Programming Reference 3-35

Program Sequencer

performs an RTS, the program returns to the address pushed onto
the PC stack and not to the address pushed while branching to the
subroutine. For example:

call foo3 (db);

PCSTK=0x9011C;

nop;

The value 0x90114 is pushed onto the PC stack, while the value 0x9011C
is written to the PC stack. Accordingly, the value 0x90114 is overwritten
by the value 0x9011C in the PC stack because values that are pushed onto
the stack have precedence over values written to the stack. Therefore,
when the program comes back by executing an RTS, the return is to
address 0x9011C and not to 0x90114.

IDLE Instruction

An interrupt is needed to come out of the IDLE instruction. If a program
places an IDLE instruction inside the delayed branch the processor remains
in the idled state because interrupts are latched but not serviced until the
program exits a delayed branch.

Stacks and Sequencing
The sequencer includes a program counter (PC) stack, which appears in
Figure 3-1 on page 3-3. At the start of a subroutine or loop, the sequencer
pushes return addresses for subroutines (CALL instructions with RTI/RTS)
and top-of-loop addresses for loops (DO/UNTIL instructions) onto the PC
stack. The sequencer pops the PC stack during a return from interrupt
(RTI), return from subroutine (RTS), and a loop termination.

The program counter (PC) register is the last stage in the instruction pipe-
line. It contains the 24-bit address of the instruction the processor
executes on the next cycle. The PC register, combined with the PC stack
(PCSTK) register, stores return addresses and top-of-loop addresses.

Stacks and Sequencing

3-36 ADSP-2136x SHARC Processor Programming Reference

The PC stack is 30 locations deep. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is full. The following bits in the STKYx register
indicate the PC stack full and empty states.

• PC stack full. Bit 21 (PCFL) indicates that the PC stack is full (if 1)
or not full (if 0)—not a sticky bit, cleared by a POP.

• PC stack empty. Bit 22 (PCEM) indicates that the PC stack is empty
(if 1) or not empty (if 0)—not sticky, cleared by a PUSH.

Table B-5 on page B-20 lists the bits in the STKYx register.

To prevent a PC stack overflow, the PC stack full condition generates the
(maskable) stack overflow interrupt (SOVFI). This interrupt occurs when
the PC stack has 29 of 30 locations filled (the almost full state). The PC
stack full interrupt occurs at this point because the PC stack full interrupt
service routine needs that last location for its return address.

The address of the top of the PC stack is available in the PC stack pointer
(PCSTKP) register. The value of PCSTKP is zero when the PC stack is empty,
is 1 through 30 when the stack contains data, and is 31 when the stack
overflows. A write to PCSTKP takes effect after one cycle of delay. If the PC
stack is overflowed, a write to PCSTKP has no effect. This register can be
read from and written to.

Manipulation of these stacks by using PUSH/POP instructions and
explicit writes to these stacks may affect the correct functioning of
the loop.

The overflow and full flags provide diagnostic aid only. Programs should
not use these flags for runtime recovery from overflow. Note that the sta-
tus stack, loop stack overflow, and PC stack full conditions trigger a
maskable interrupt.

ADSP-2136x SHARC Processor Programming Reference 3-37

Program Sequencer

The empty flags can ease stack saves to memory. Programs can monitor
the empty flag when saving a stack to memory to determine when the pro-
cessor has transferred all the values.

Loops and Sequencing
Another type of non-sequential program flow that the sequencer supports
is looping. A loop occurs when a DO/UNTIL instruction causes the processor
to repeat a sequence of instructions until a condition tests true. Unlike
other processors, the ADSP-2136x processors automatically evaluate the
loop termination condition and modify the program counter (PC) register
appropriately. This allows zero overhead looping.

A DO UNTIL instruction may be broadly classified as counter based
and arithmetic.

Counter Based Loops
Counter based loops are comprised of instructions that are set to run a
specified number of iterations. These iterations are controlled by the loop
counter register (LCNTR). The LCNTR register is a non memory-mapped uni-
versal register that is initialized to the count value and the loop counter
expired (LCE) instruction is used to check the termination condition. Expi-
ration of LCE signals that the loop has completed the number of iterations
as per the count value in LCNTR. Loops that terminate with conditions
other than LCE have some additional restrictions. For more information,
see “Restrictions on Ending Loops” on page 3-43 and “Restrictions on
Short Loops” on page 3-46. For more information on condition types in
DO/UNTIL instructions, see “Interrupts and Sequencing” on page 3-68.

Note that the processor’s SIMD mode influences the execution of loops.

Loops and Sequencing

3-38 ADSP-2136x SHARC Processor Programming Reference

The DO/UNTIL instruction uses the sequencer’s loop and condition features,
as shown in Figure 3-1 on page 3-3. These features provide efficient soft-
ware loops without the overhead of additional instructions to branch, test
a condition, or decrement a counter. The following code example shows a
DO/UNTIL loop that contains three instructions and iterates 30 times.

LCNTR = 30, DO the_end UNTIL LCE; /*Loop iterates 30 times*/

R0 = DM(I0,M0), F2 = PM(I8,M8);

R1 = R0-R15;

the_end: F4 = F2 + F3; /*Last instruction in loop*/

When executing a DO/UNTIL instruction, the program sequencer pushes the
address of the loop’s last instruction and its termination condition onto
the loop address stack. The sequencer also pushes the top-of-loop address,
(the address of the instruction following the DO/UNTIL instruction), onto
the PC stack.

Even though DO/UNTIL loops are executed in the execute stage of the
instruction pipeline, the next instruction to be fetched is determined when
the DO/UNTIL instruction is in the address stage. This helps to reduce over-
head when executing short loops.

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition and, if the loop is counter based, decrement the
counter before the end of the loop. Based on the test’s outcome, the next
fetch either exits the loop or returns to the top-of-loop.

The termination condition test occurs when the processor is executing the
instruction that is four locations before the last instruction in the loop (at
location e – 4, where e is the end-of-loop address). If the condition tests
false, the sequencer repeats the loop and fetches the instruction from the
top-of-loop address, which is stored on the top of the PC stack. If the con-
dition tests true, the sequencer terminates the loop and fetches the next
instruction after the end of the loop, popping the loop and PC stacks.

ADSP-2136x SHARC Processor Programming Reference 3-39

Program Sequencer

A special case of loop termination is the loop abort instruction, JUMP (LA).
This instruction causes an automatic loop abort when it occurs inside a
loop. When the loop aborts, the sequencer pops the PC and loop address
stacks once. If the aborted loop was nested, the single pop of the stacks
leaves the correct values in place for the outer loop.

Table 3-16 and Table 3-17 show the instruction pipeline states for loop
iteration and termination.

Arithmetic Loops
Arithmetic loops are loops where the termination condition in the
DO/UNTIL loop is any thing other than LCE. An example of arithmetic loop
is given below.

 R8=30;

 DO label UNTIL EQ;

 R8=R8-1,R0=DM(I0,M0),F2=PM(I8,M8);

 R1=R0-R15;

 Label: F4=F2+F3

Table 3-16. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles 1 2 3 4 5 6

Execute e–4 e–3 e–2 e–1 e b

Address e–3 e–2 e–1 e b b+1

Decode e–2 e–1 e b b+1 b+2

Fetch2 e–1 e b b+1 b+2 b+3

Fetch1 e b b+1 b+2 b+3 b+4

e is the loop end instruction and b is the loop start instruction
1. Cycle1: Termination condition tests false
2. Cycle2: Top-of-loop address from PC stack

Loops and Sequencing

3-40 ADSP-2136x SHARC Processor Programming Reference

Conditional Sequencing
The sequencer supports conditional execution with conditional logic, as
illustrated in Figure 3-4 on page 3-84. This logic evaluates conditions for
conditional (IF) instructions and loop (DO/UNTIL) terminations. The con-
ditions are based on information from the arithmetic status registers
(ASTATx and ASTATy), the mode control 1 register (MODE1), the flag inputs,
and the loop counter. For more information on arithmetic status, see
“Using Computational Status” on page 2-15. When in SIMD mode, con-
ditional execution is effected by the arithmetic status of both processing
elements. For information on conditional sequencing in SIMD mode, see
“Summary” on page 3-83.

Each condition that the processor evaluates has an assembler mnemonic.
The condition mnemonics for conditional instructions appear in
Table 3-18. For most conditions, the sequencer can test both true and
false states. For example, the sequencer can evaluate ALU equal-to-zero
(EQ) and ALU not-equal-to-zero (NE).

To branch conditionally based on the value of a register, a program can
use the test flag (TF) condition generated from a bit test flag (BTF) instruc-
tion. The TF flag is set or cleared as a result of a BIT TST or BIT XOR
instruction, which can test the contents of any of the processor’s system
registers, including STKYx and STKYy.

Table 3-17. Pipelined Execution Cycles for Loop Termination

Cycles 1 2 3 4 5 6

Execute e–4 e–3 e–2 e–1 e e+1

Address e–3 e–2 e–1 e e+1 e+2

Decode e–2 e–1 e e+1 e+2 e+3

Fetch2 e–1 e e+1 e+2 e+3 e+4

Fetch1 e e+1 e+2 e+3 e+4 e+5

e is the loop end instruction
1. Cycle1: Termination condition tests true
2. Cycle2: Loop aborts, PC and loop stacks popped

ADSP-2136x SHARC Processor Programming Reference 3-41

Program Sequencer

Table 3-18. IF Condition and DO/UNTIL Termination
Mnemonics

Condition From Description True If… Mnemonic

ALU ALU = 0 AZ = 1 EQ

ALU ≠ 0 AZ = 0 NE

ALU > 0 footnote1 GT

ALU < zero footnote2 LT

ALU ≥ 0 footnote3 GE

ALU ≤ 0 footnote4 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV

Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

Bit Test Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

Loops and Sequencing

3-42 ADSP-2136x SHARC Processor Programming Reference

The two conditions that do not have complements are LCE/NOT LCE (loop
counter expired/not expired) and TRUE/FOREVER. The context of these con-
dition codes determines their interpretation. Programs should use TRUE
and NOT LCE in conditional (IF) instructions. Programs should use
FOREVER and LCE to specify loop (DO/UNTIL) termination. A DO FOREVER
instruction executes a loop indefinitely, until an interrupt or reset
intervenes.

There are some restrictions on how programs may use conditions in
DO/UNTIL loops. For more information, see “Restrictions on Ending
Loops” on page 3-43 and “Restrictions on Short Loops” on page 3-46.

Flag Input Flag0 asserted FI0 = 1 FLAG0_IN

Flag0 not asserted FI0 = 0 NOT FLAG0_IN

Flag1 asserted FI1 = 1 FLAG1_IN

Flag1 not asserted FI1 = 0 NOT FLAG1_IN

Flag2 asserted FI2 = 1 FLAG2_IN

Flag2 not asserted FI2 = 0 NOT FLAG2_IN

Flag3 asserted FI3 = 1 FLAG3_IN

Flag3 not asserted FI3 = 0 NOT FLAG3_IN

Sequencer Loop counter expired (Do) CURLCNTR = 1 LCE

Loop counter not expired (IF) CURLCNTR ≠ 1 NOT LCE

Always false (Do) Always FOREVER

Always true (IF) Always TRUE

1 ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0
2 ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
3 ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 0
4 ALU lesser or equal (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 1

Table 3-18. IF Condition and DO/UNTIL Termination
Mnemonics (Cont’d)

Condition From Description True If… Mnemonic

ADSP-2136x SHARC Processor Programming Reference 3-43

Program Sequencer

Restrictions on Ending Loops
The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. These restrictions include:

• Nested loops cannot use the same end-of-loop instruction address.
The sequencer resolves whether to loop back or not, based on the
termination condition. If multiple nested loops end on the same
instruction, the sequencer exits all the loops when the termination
condition for the current loop tests true. There may be other
sequencing errors.

• Nested loops with a non-counter based loop as the outer loop must
place the end address of the outer loop at least two addresses after
the end address of the inner loop.

• Nested loops with a non-counter based loop as the outer loop that
use the loop abort instruction, JUMP (LA), to abort the inner loop,
may not JUMP (LA) to the last instruction of the outer loop.

• For counter based loops, an instruction that writes to the loop
counter from memory cannot be used as the fifth-to-last instruc-
tion of a counter-based loop (at e–4, where e is the end-of-loop
address).

• An IF NOT LCE instruction cannot be used as the instruction that
follows a write to CURLCNTR from memory.

• Branch (JUMP or CALL) instructions may not be used as any of the
last three instructions of a loop. This no end-of-loop branches rule
also applies to single instruction, two instruction, and three
instruction loops.

There is one exception to the no end-of-loop branches rule. The
last three instructions of a loop may contain an immediate CALL, a
CALL without a DB modifier which is paired with a loop re-entry

Loops and Sequencing

3-44 ADSP-2136x SHARC Processor Programming Reference

return, or a return (RTS) with the loop reentry modifier (LR).
RTS(LR) ensures that the loop counter is not decremented twice. .
The immediate CALL may be one of the last three instructions of a
loop except for: one instruction, or two instructions, one iteration
loops.

• The loop controller uses the loop stack LPSTK, and program control
PCSTK for its operation. Manipulation of these stacks by using
PUSH/POP instructions and explicit writes to these stacks may affect
the correct functioning of the loop.

• The IDLE and EMUIDLE instructions should not be used in:

1. Counter based loops of one, two or three instructions

2. The fourth instruction of a counter based loop with four
instructions

3. The fifth from last (e-4) instruction of a loop with more
than four instructions

4. The last three instructions of any arithmetic loop

Note that any modification of the loop resources, such as the PC stack,
Loop stack and the CURLCNTR register within the loop may adversely affect
the proper functioning of the looping operation and should be avoided.

Short Loops
Short loops are the loops having one, two or three instructions in the body
of the loop. Since the body of the loop is less than the depth of the
instruction pipeline, short loops give rise to overhead or lost cycles. Some
of the overhead is eliminated by handling these short loops in a special
way. The following describes how to minimize or eliminate overhead in
short loops.

ADSP-2136x SHARC Processor Programming Reference 3-45

Program Sequencer

1. Determine the next fetch address at the start of the loop.

When the DO/UNTIL instruction is in the address phase of the
instruction pipeline, the next fetch address is determined based on
the following rule.

Assuming DO/UNTIL is the nth instruction:

a. Fetch n+1 in the next cycle in the case of one and three
instruction loops.

b. Fetch n+2 in the next cycle in the case of a two-instruction
loop.

c. Fetch the next instruction in all other cases.

2. Special handling

When a DO/UNTIL instruction (n) is in the address stage of the
instruction pipeline, the three instructions following it (n+1, n+2,
n+3) are also in the pipeline. In the case of a one-instruction loop,
the instructions at the fetch2 and fetch1 stages (n+2 and n+3) are
not part of the loop body. For two-instruction loops, the instruc-
tion at the fetch1 stage (n+3) is not part of the loop body. The
unwanted instructions are eliminated by the following.

a. In the case of one-instruction loop, the instruction (n+1) is
held in the decode stage for two additional cycles to allow
the instruction pipeline to complete the first fetch from
memory.

b. In the case of two-instruction loop, the processor makes use
of an instruction buffer. Whenever a DO/UNTIL instruction is
detected, the instruction buffer is updated with the instruc-
tion following it. The instruction from the instruction
buffer (n+1) is substituted for the instruction (n+3), when it
moves to the decode stage of the instruction pipeline.

Loops and Sequencing

3-46 ADSP-2136x SHARC Processor Programming Reference

Restrictions on Short Loops
The sequencer’s instruction pipeline features (which can optimize perfor-
mance in many ways) restrict how short loops iterate and terminate. Short
loops (one, two, or three instruction loops) terminate in a special way
because they are shorter than the instruction pipeline. Counter based
loops (DO/UNTIL LCE) of one, two, or three instructions are not long
enough for the sequencer to check the termination condition four instruc-
tions before the end of the loop. In these short loops, the sequencer has
already looped back when the termination condition is tested. The
sequencer provides special handling to prevent overhead (NOP) cycles if the
loop is iterated a minimum number of times. This is described below.

• A loop that contains one instruction must iterate at least four times
(only initial stall).

• A loop that contains two instructions must iterate at least two
times (only initial stall).

• A loop that contains three instructions must iterate at least two
times.

Short loops that iterate less than minimum number of times, incur
up to three cycles of overhead, because there can be up to three
aborted instructions after the last iteration to clear the instruction
pipeline.

Table 3-19 summarizes all the cases of the loops and the way the termina-
tion condition is checked.

Table 3-19. Loop Termination Condition Checks

Body Iteration Condition Check1 Lost Cycles Remark

1 1, 2, 3 CURLCNTR==1 3

1 4 and more CURLCNTR==4 None Special case

2 1 CURLCNTR==1 2

ADSP-2136x SHARC Processor Programming Reference 3-47

Program Sequencer

Table 3-20 through Table 3-24 show the instruction pipeline execution
for counter based single instruction loops. Table 3-25 through Table 3-27
show the pipeline execution for counter based two instruction loops.
Table 3-28 and Table 3-29 show the pipeline execution for counter based
three instruction loops.

2 2 and more CURLCNTR==2 None Special case

3 1 CURLCNTR==1 3

3 2 and more CURLCNTR==2 None Special case

4 and more Any CURLCNTR==1 None

1 The termination condition is always checked when the last instruction of the loop is fetched,
(when the instruction that is four instructions before the end-of-loop is executed).

Table 3-20. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Five Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+1 n+1 n+1 n+1

Address n n+1 nop n+1 n+1 n+1 n+1 n+2

Decode n+1 n+1→nop n+1 n+1 n+1 n+1 n+2 n+3

Fetch2 n+2 n+3 n+3 n+1 n+1 n+2 n+3 n+4

Fetch1 n+3 n+1 n+1 n+1 n+2 n+3 n+4 n+5

n is the loop start instruction and n+2 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage.
2. Cycle2: Loop count (LCNTR) equals 5, Decode stalls.
3. Cycle3: n+1 stays in decode, n+1 put into fetch stage.
4. Cycle4: Last instruction fetched, counter expired tests true, n+1 stays in decode.
5. Cycle5: Loop back aborts, PC and Loop stacks popped, the instruction after the loop (n+2) is
put in fetch2.
6. Cycle6: Decode stage updates from fetch2.

Table 3-19. Loop Termination Condition Checks (Cont’d)

Body Iteration Condition Check1 Lost Cycles Remark

Loops and Sequencing

3-48 ADSP-2136x SHARC Processor Programming Reference

Table 3-21. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Four Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+1 n+1 n+1 n+2

Address n n+1 nop n+1 n+1 n+1 n+2 n+3

Decode n+1 n+1→nop n+1 n+1 n+1 n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+1 n+1 n+2 n+3 n+4 n+5 n+6

n is the loop start instruction and n+2 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage.
2. Cycle2: Loop count (LCNTR) equals 4, decode stalls.
3. Cycle3: LCNTR equals 4, n+1 stays in decode, last instruction fetched, counter expired tests
true.
4. Cycle4: n+1 stays in decode, loop back aborts, PC and Loop stacks popped, the next
instruction after the loop (n+2) is put into fetch.
5. Cycle5: Decode stage updates from fetch2.

Table 3-22. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Three Iterations

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 nop n+1 n+1 nop nop nop

Address n n+1 nop n+1 n+1 nop nop nop n+2

Decode n+1 n+1→nop n+1 n+1 nop nop nop n+2 n+3

Fetch2 n+2 n+3 n+3 n+1 n+1 n+1 n+2 n+3 n+4

Fetch1 n+3 n+1 n+1 n+1 n+1 n+2 n+3 n+4 n+5

n is the loop start instruction and n+2 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage.
2. Cycle2: Loop count (LCNTR) equals 3, decode stalls.
3. Cycle3: n+1 stays in decode, n+1 put in fetch1 stage.
4. Cycle4: n+1 stays in decode, n+1 put in fetch1 stage.
5. Cycle5: Last instruction fetched, counter expired tests true.
6. Cycle6: Loop-back aborts, PC and loop stacks popped, n+2 put in fetch1.

ADSP-2136x SHARC Processor Programming Reference 3-49

Program Sequencer

Table 3-23. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With Two Iterations

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 nop n+1 nop nop nop n+2

Address n n+1 nop n+1 nop nop nop n+2 n+3

Decode n+1 nop n+1 nop nop nop n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+1 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+1 n+1 n+1 n+2 n+3 n+4 n+5 n+6

n is the loop start instruction and n+2 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1. n+1 locked in decode stage 2.
2. Cycle2: Loop count (LCNTR) equals 2, decode stalls.
3. Cycle3: n+1 stays in decode, n+1 put in fetch1 stage.
4. Cycle4: Last instruction fetched, counter expired tests true.
5. Cycle5: Loop-back aborts, PC and loop stacks popped.

Table 3-24. Pipelined Execution Cycles for Single Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop nop nop nop n+2

Address n n+1 nop nop nop nop n+2 n+3

Decode n+1 n+1→nop n+1→nop n+1→nop n+1→nop n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+1 n+1 n+2 n+3 n+4 n+5 n+6

n is the loop start instruction and n+2 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1.
2. Cycle2: Loop count (LCNTR) equals 1, decode stalls.
3. Cycle3: Last instruction fetched, counter expired tests true.
4. Cycle5: Loop-back aborts, PC and loop stacks popped, n+2 put in fetch1 stage.

Loops and Sequencing

3-50 ADSP-2136x SHARC Processor Programming Reference

Table 3-25. Pipelined Execution Cycles for Two Instruction Counter
Based Loop With Three Iterations

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 nop n+2 n+1 n+2 n+1 n+2

Address n n+1 nop n+2 n+1 n+2 n+1 n+2 n+3

Decode n+1 n+2→nop n+2 n+1↵ n+2 n+1 n+2 n+3 n+4

Fetch2 n+2 n+3 n+3 n+2 n+1 n+2 n+3 n+4 n+5

Fetch1 n+3 n+2 n+2 n+1 n+2 n+3 n+4 n+5 n+6

Note: n is the loop start instruction and n+3 is the instruction after the loop.
1. Cycle1: Next fetch address determined as n+2.
2. Cycle2: Loop count (LCNTR) equals 3, decode stalls.
3. Cycle3: Next fetch address determined as n+1, n+3 and n+2 held in Fetch2 and Fetch1
respectively.
4. Cycle4: n+1 supplied from instruction buffer into decode, PC stack supplies top of loop
address.
5. Cycle5: Last instruction fetched, counter expired tests true.
6. Cycle6: Loop-back aborts, PC and loop stacks popped.

Table 3-26. Pipelined Execution Cycles for Two Instruction Counter
Based Loop With Two Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+2 n+1 n+2 n+3

Address n n+1 nop n+2 n+1 n+2 n+3 n+4

Decode n+1 n+2→nop n+2 n+1↵ n+2 n+3 n+4 n+5

Fetch2 n+2 n+3 n+3 n+2 n+3 n+4 n+5 n+6

Fetch1 n+3 n+2 n+2 n+3 n+4 n+5 n+6 n+7

n is the loop start instruction and n+3 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+2.
2. Cycle2: Loop count (LCNTR) equals 2, decode stalls.
3. Cycle3: n+3, and n+2 held in fetch2 and fetch1 respectively counter expired tests true.
4. Cycle4: n+1 supplied from instruction buffer into decode, loop-back aborts, PC and
loop stacks popped.

ADSP-2136x SHARC Processor Programming Reference 3-51

Program Sequencer

Table 3-27. Pipelined Execution Cycles for Two Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+2 nop nop n+3

Address n n+1 nop n+2 nop nop n+3 n+4

Decode n+1 n+2→nop n+2 n+3→nop n+2→nop n+3 n+4 n+5

Fetch2 n+2 n+3 n+3 n+2 n+3 n+4 n+5 n+6

Fetch1 n+3 n+2 n+2 n+3 n+4 n+5 n+6 n+7

n is the loop start instruction and n+3 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+2.
2. Cycle2: Loop count (LCNTR) equals 1, decode stalls.
3. Cycle3: Last instruction fetched, counter expired tests true.
4. Cycle4: loop-back aborts, PC and loop stacks popped.

Table 3-28. Pipelined Execution Cycles for Three Instruction Counter
Based Loop With Two Iterations

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 n+2 n+3 n+1 n+2 n+3

Address n n+1 n+2 n+3 n+1 n+2 n+3 n+4

Decode n+1 n+2 n+3 n+1 n+2 n+3 n+4 n+5

Fetch2 n+2 n+3 n+1 n+2 n+3 n+4 n+5 n+6

Fetch1 n+3 n+1 n+2 n+3 n+4 n+5 n+6 n+7

n is the loop start instruction and n+4 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1.
2. Cycle2: Loop count (LCNTR) equals 2, fetch address determined by the given rule.
3. Cycle3: Last instruction fetched, counter expired tests true.
4. Cycle4: loop-back aborts, PC and loop stacks popped.

Loops and Sequencing

3-52 ADSP-2136x SHARC Processor Programming Reference

Evaluation of NOT LCE Condition in Counter Based Loops

During the normal execution of the counter based loop, CURLCNTR is dec-
remented in every iteration of the loop, when the end-of-loop instruction
is fetched. Therefore, the NOT LCE condition changes accordingly. Since
there are two cycles of latency for the NOT LCE condition to change after
CURLCNTR value has changed, an instruction with a branch on the NOT LCE
condition also has two cycles of latency. For all other instructions, the
latency is one cycle. The following is an example.

Table 3-29. Pipelined Execution Cycles for Three Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8 9

Execute n n+1 n+2 n+3 nop nop nop n+4

Address n n+1 n+2 n+3 nop nop nop n+4 n+5

Decode n+1 n+2 n+3 nop nop nop n+4 n+5 n+6

Fetch2 n+2 n+3 n+1 n+2 n+3 n+4 n+5 n+6 n+7

Fetch1 n+3 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

n is the loop start instruction and n+4 is the instruction after the loop.

1. Cycle1: Next fetch address determined as n+1.
2. Cycle2: Loop count (LCNTR) equals 1, fetch address determined by the given rule.
3. Cycle4: Last instruction fetched, counter expired tests true.
4. Cycle5: loop-back aborts, PC and loop stacks popped.

Table 3-30. Pipelined Execution Cycles for Four Instruction Counter
Based Loop With One Iteration

Cycles 1 2 3 4 5 6 7 8

Execute n n+1 nop n+2 n+3 n+4 n+5

Address n n+1 nop n+2 n+3 n+4 n+5 n+6

Decode n+1 n+2→nop n+2 n+3 n+4 n+5 n+6 n+7

Fetch2 n+2 n+3 n+3 n+4 n+5 n+6 n+7 n+8

Fetch1 n+3 n+4 n+4 n+5 n+6 n+7 n+8 n+9

n is the loop start instruction and n+5 is the instruction after the loop
1. Cycle2: Loop count (LCNTR) equals 1, decode stalls
2. Cycle3: Last instruction fetched, Counter expired tests true
3. Cycle4: Loop-back aborts, PC and loop stacks popped

ADSP-2136x SHARC Processor Programming Reference 3-53

Program Sequencer

LCNTR=<COUNT>, DO End UNTIL LCE;

...

Instr(e-4); /* In last iteration CURLCNTR=1 */

IF NOT LCE CALL (sub1); /* In all iterations branch is taken */

IF NOT LCE CALL (sub2); /* In all iterations branch is taken.

 However, a non-branch instruction

 aborts only in the last iteration */

IF NOT LCE <any type>; /* Branch aborts only in the last

 iteration */

End: Instr(e)

Note that the latency is counted in terms of machine cycles and not in
terms of instruction cycles. Therefore the behavior is different from that
shown in the example, if the pipeline is stalled for some reason (for exam-
ple for a DMA).

Arithmetic or Non-Counter Based Loops

An arithmetic loop is one in which the loop termination condition is
something other than LCE. Some restrictions related to non-counter based
loops have been mentioned in “Restrictions on Ending Loops” on
page 3-43.

In this type of loop, where the body has more than one instruction, the
termination condition is checked when the second instruction of the loop
body is fetched. In loops that contain a single instruction, the termination
condition is checked in every cycle after the DO/UNTIL instruction is
executed.

If the termination condition tests false, then the next instruction is
fetched. If the termination condition tests true, then the instruction fol-
lowing the end-of-loop instruction is fetched in the next cycle and the two
instructions currently in the fetch1 and fetch2 stages of the instruction
pipeline are flushed.

Loops and Sequencing

3-54 ADSP-2136x SHARC Processor Programming Reference

Table 3-31 shows the execution cycles for an arithmetic loop with six
instructions.

Short non-counter based loops terminate differently from short counter
based loops. These differences stem from the architecture of the pipeline
and the conditional logic:

• In a three instruction loop, the termination condition is checked
during the cycle where the second instruction is in the fetch1 stage
of the pipeline (when the top of the loop is executed). If the condi-
tion becomes true, the sequencer completes one full pass (after the
current pass) of the loop before exiting.

• In a two instruction loop, the termination condition is checked
during the cycle where the last (second from top-of-loop) instruc-
tion is in the fetch1 stage of the pipeline. If the condition becomes
true when the first instruction is being executed, it tests true during
the second instruction as well and one more full pass completes
before exiting the loop. If the condition becomes true during the
second instruction, two more full passes complete before exiting
the loop.

Table 3-31. Pipelined Execution Cycles for Six Instruction Non-Counter
Based Loop

Cycles 1 2 3 4 5 6 7 8 9

Execute b b+1 b+2 b+3 b+4 b+5 nop nop b+6

Address b+1 b+2 b+3 b+4 b+5 nop nop b+6 b+7

Decode b+2 b+3 b+4 b+5 b→nop b+1→nop b+6 b+7 b+8

Fetch2 b+3 b+4 b+5 b b+1 b+6 b+7 b+8 b+9

Fetch1 b+4 b+5 b b+1 b+6 b+7 b+8 b+9 b+10

b is the first instruction of the body of the loop and b+6 is the instruction after the loop
1. Cycle2: Loop back, next fetch instruction is b.
2. Cycle4: Termination condition tests true, loop-back aborts, PC and loop stacks popped.

ADSP-2136x SHARC Processor Programming Reference 3-55

Program Sequencer

• In a one instruction loop, the sequencer tests the termination con-
dition every cycle. After the cycle when the condition becomes
true, the sequencer completes three more iterations of the loop
before exiting.

Note that two stages of the pipeline are always flushed in arithmetic loops.

Loop Address Stack
The sequencer’s loop support, shown in Figure 3-1 on page 3-3, includes
a loop address stack. The loop address stack is six levels deep by 32 bits
wide.

The LADDR register contains the top entry on the loop address stack. This
register is readable and writable over the DM data bus. Reading from and
writing to LADDR does not move the loop address stack pointer. Only a
stack push or pop performed with explicit instructions moves the stack
pointer. The LADDR register contains the value 0xFFFF FFFF when the
loop address stack is empty. A write to LADDR has no effect when the loop
address stack is empty “Loop Address Stack Register (LADDR)” on
page B-32 lists the bits in the LADDR register.

The sequencer pushes the termination address, termination code and the
loop type information onto the loop address stack when executing a
DO/UNTIL instruction. The PUSH LOOP instruction pushes the stack by
changing the pointer only. It does not alter the contents of the loop
address stack. Therefore, the PUSH LOOP instruction should be usually fol-
lowed by a write to LADDR register.

The stack entry pops off the stack four instructions before the end of its
loop’s last iteration or on a POP Loop instruction. A stack overflow occurs if
a seventh entry (one more than full) is pushed onto the loop stack. The
stack is empty when no entries are occupied.

Loops and Sequencing

3-56 ADSP-2136x SHARC Processor Programming Reference

The loop stacks’ overflow or empty status is available. Because the
sequencer keeps the loop stack and loop counter stack synchronized, the
same overflow and empty flags apply to both stacks. These flags are in the
sticky status register (STKYx). For more information on STKYx, see
Table B-5 on page B-20. For more information on how these flags work
with the loop stacks, see “Loop Status” on page 3-56. Note that a loop
stack overflow causes a maskable interrupt.

Because the sequencer tests the termination condition four instructions
before the end of the loop, the loop stack pops before the end of the loop’s
final iteration. If a program reads LADDR in these last four instructions, the
value is already the termination address for the next loop stack entry.

If the loop abort (LA) modifier is specified in the jump, a jump out of the
loop pops the loop address stack, PC stack and the loop count stack (if the
loop is counter based). This allows the loop to continue to function cor-
rectly. However, because only one pop is performed, the loop abort
cannot be used to jump more than one level of loop nesting.

Loop Status
The sequencer’s loop support, shown in Figure 3-1 on page 3-3, also
includes a loop counter stack. The sequencer keeps the loop counter stack
synchronized with the loop address stack. Both stacks always have the
same number of locations occupied. Because these stacks are synchro-
nized, the same empty and overflow status flags from the STKYx register
apply to both stacks.

The loop counter stack is six locations deep by 32 bits wide. The stack is
full when all entries are occupied, is empty when no entries are occupied,
and is overflowed if a push occurs when the stack is already full. The fol-
lowing bits in the STKYx register indicate the loop counter stack full and
empty states.

ADSP-2136x SHARC Processor Programming Reference 3-57

Program Sequencer

• Loop stacks overflowed. Bit 25 (LSOV) indicates that the loop
counter stack and loop stack are overflowed (if set to 1) or not
overflowed (if set to 0)— LSOV is a sticky bit.

• Loop stacks empty. Bit 26 (LSEM) indicates that the loop counter
stack and loop stack are empty (if set to 1) or not empty (if set to
0)—not sticky, cleared by a PUSH.

Table B-5 on page B-20 lists the bits in the STKYx register.

Within the sequencer, two separate loop counters operate: the current
loop counter (CURLCNTR) and loop counter (LCNTR) registers allow access to
the loop counter stack. The CURLCNTR register tracks iterations for a loop
being executed, and the LCNTR register holds the count value before the
loop is executed. The two counters let the processor maintain the count
for an outer loop, while a program is setting up the count for an inner
loop.

The top entry in the loop counter stack always contains the current loop
count. This entry is the CURLCNTR register which is readable and writable
over the DM data bus. Reading CURLCNTR when the loop counter stack is
empty returns the value 0xFFFF FFFF. A write to CURLCNTR has no effect
when the loop counter stack is empty.

The sequencer decrements the value of CURLCNTR for each loop iteration.
Because the sequencer tests the termination condition four instruction
cycles before the end of the loop, the loop counter also is decremented
before the end of the loop. If a program reads CURLCNTR during these last
four loop instructions, the value is already the count for the next iteration.

The loop counter stack is popped four instructions before the end of the
last loop iteration. When the loop counter stack is popped, the new top
entry of the stack becomes the CURLCNTR value—the count in effect for the
executing loop. If there is no executing loop, the value of CURLCNTR is
0xFFFF FFFF after the pop.

SIMD Mode and Sequencing

3-58 ADSP-2136x SHARC Processor Programming Reference

Writing to CURLCNTR does not cause a stack push. If a program writes a
new value to CURLCNTR, the count value of the loop currently executing is
affected. When a DO/UNTIL LCE loop is not executing, writing to CURLCNTR
has no effect. Because the processor must use CURLCNTR to perform counter
based loops, there are some restrictions as to when a program can write to
CURLCNTR. See “Restrictions on Ending Loops” on page 3-43 for more
information.

The LCNTR register is the next-to-top entry in the loop counter stack. It is
the location on the stack that takes effect on the next loop stack push. The
LCNTR register is used to set up a count value for a nested loop without
changing the count value for the currently executing loop.

A value of zero in LCNTR causes a loop to execute 232 times.

A DO/UNTIL LCE instruction pushes the value of LCNTR onto the loop
counter stack, making that value the new CURLCNTR value. Figure 3-3 dem-
onstrates this process for a set of nested loops. The previous CURLCNTR
value is preserved one location down in the stack. If a program reads LCNTR
when the loop counter stack is full, the stack returns invalid data. When
the loop counter stack is full, the stack discards any data written to LCNTR.
If a program reads LCNTR during the last four instructions of a terminating
loop, the value of LCNTR is the last CURLCNTR value for the loop.

SIMD Mode and Sequencing
The processor supports a SIMD (single-instruction, multiple-data) mode.
In this mode, both of the processor’s processing elements (PEx and PEy)
execute instructions and generate status conditions. For more information
on SIMD computations, see “SIMD (Computational) Operations” on
page 2-49.

Because the two processing elements can generate different outcomes, the
sequencers must evaluate conditions from both elements (in SIMD mode)
for conditional (IF) instructions and loop (DO/UNTIL) terminations. The

ADSP-2136x SHARC Processor Programming Reference 3-59

Program Sequencer

processor records status for the PEx element in the ASTATx and STKYx reg-
isters. The processor records status for the PEy element in the ASTATy and
STKYy registers. Table B-4 on page B-14 lists the bits in ASTATx and
ASTATy, and Table B-5 on page B-20 lists the bits in STKYx and STKYy.

Figure 3-3. Pushing the Loop Counter Stack for Nested Loops

1

AAAA AAAALCNTR

CURLCNTR

LCNTR

4

AAAA AAAA

DDDD DDDD

CCCC CCCC

BBBB BBBB

AAAA AAAA

0XFFFF FFFF

LCNTR

CURLCNTR

CURLCNTR

LCNTR

3

AAAA AAAA

CCCC CCCC

BBBB BBBB

CURLCNTR

LCNTR

6

BBBB BBBB

AAAA AAAA

DDDD DDDD

CCCC CCCC

FFFF FFFF

EEEE EEEE

CURLCNTR

7

BBBB BBBB

DDDD DDDD

FFFF FFFF

CCCC CCCC

EEEE EEEE

AAAA AAAA

CURLCNTR

LCNTR

2

AAAA AAAA

BBBB BBBB

CURLCNTR

LCNTR

5

AAAA AAAA

BBBB BBBB

CCCC CCCC

DDDD DDDD

EEEE EEEE

SIMD Mode and Sequencing

3-60 ADSP-2136x SHARC Processor Programming Reference

Even though the processor has dual processing elements, the sequencer
does not have dual sets of stacks. The sequencer has one PC stack, one
loop address stack, and one loop counter stack. The status bits for stacks
are in STKYx and are not duplicated in STKYy. In SIMD mode, the status
stack stores both ASTATx and ASTATy values. A status stack PUSH or POP
instruction in SIMD mode affects both registers in parallel.

While in SIMD mode, the sequencer evaluates conditions from both pro-
cessing elements for conditional (IF) and loop (DO/UNTIL) instructions.
Table 3-32 on page 3-60 summarizes how the sequencer resolves each
conditional test when SIMD mode is enabled.

Table 3-32. Conditional Execution Summary

Conditional Operation Conditional Outcome Depends On …

Compute Operations Executes in each PE independently depending on
condition test in each PE

Branches and Loops Executes in sequencer depending on ANDing
condition test on both PEs

Data Moves (from complementary
pair1 to complementary pair)

1 Complementary pairs are registers with SIMD complements, include PEx/y data registers and
USTAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 Uregs.

Executes move in each PE (and/or memory) independently
depending on condition test in each PE

Data Moves (from uncomplemen-
tary Ureg register to complementary
pair)

Executes move in each PE (and/or memory) independently
depending on condition test in each PE; Ureg is source for
each move

Data Moves (from complementary
pair to uncomplementary register2)

2 Uncomplementary registers are Uregs that do not have SIMD complements.

Executes explicit move to uncomplementary universal
register depending on the condition test in PEx only; no
implicit move occurs

DAG Operations Executes modify3 in DAG depending on ORing condition
test on both PE’s

3 Post-modify operations follow this rule, but pre-modify operations always occur despite the
 outcome.

ADSP-2136x SHARC Processor Programming Reference 3-61

Program Sequencer

Conditional Compute Operations
While in SIMD mode, a conditional compute operation can execute on
both processing elements, either element, or neither element, depending
on the outcome of the status flag test. Flag testing is independently per-
formed on each processing element.

Conditional Branches and Loops
The processor executes a conditional branch (JUMP or CALL with RTI/RTS)
or loop (DO/UNTIL) based on the result of ANDing the condition tests on
both PEx and PEy. A conditional branch or loop in SIMD mode occurs
only when the condition is true in PEx and PEy.

Using complementary conditions (for example EQ and NE), programs can
produce an ORing of the condition tests for branches and loops in SIMD
mode. A conditional branch or loop that uses this technique must consist
of a series of conditional compute operations. These conditional computes
generate NOPs on the processing element where a branch or loop does not
execute. For more information on programming in SIMD mode, see
“Instruction Set” in Chapter 8, Instruction Set, and “Computations Ref-
erence” in Chapter 9, Computations Reference.

Conditional Data Moves
The execution of a conditional (IF) data move (register-to-register and
register-to/from-memory) instruction depends on three factors:

• The explicit data move depends on the evaluation of the condi-
tional test in the PEx processing element.

• The implicit data move depends on the evaluation of the condi-
tional test in the PEy processing element.

• Both moves depend on the types of registers used in the move.

SIMD Mode and Sequencing

3-62 ADSP-2136x SHARC Processor Programming Reference

The four cases of SIMD conditional data moves are described in the fol-
lowing sections.

Case #1: Complementary Register Pair Data Move

In this case, data moves from a complementary register pair to a comple-
mentary register pair. The processor executes the explicit move depending
on the evaluation of the conditional test in the PEx processing element
and the implicit move depending on the evaluation of the conditional test
in the PEy processing element.

Example 1 – Register-to-Memory Move – PEx Explicit Register

IF EQ DM(I0,M0) = R2;

For this instruction, the processor is operating in SIMD mode, a register
in the PEx data register file is the explicit register, and I0 is pointing to an
even address in internal memory. Indirect addressing is shown in the
instructions in the example. However, the same results occur using direct
addressing. The data movement resulting from the evaluation of the con-
ditional test in the PEx and PEy processing elements is shown in
Table 3-33.

Table 3-33. Register-to-Memory Moves—Complementary Pairs (PEx
Explicit Register)

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from r2 to
location I0

s2 transfers to location (I0+1)

1 0 r2 transfers to location I0 No data move occurs from s2
to location (I0+1)

1 1 r2 transfers to location I0 s2 transfers to location (I0+1)

ADSP-2136x SHARC Processor Programming Reference 3-63

Program Sequencer

Example 2 Register-to-Memory Move – PEy Explicit Register

IF EQ DM(I0,M0) = S2;

For this instruction, the processor is operating in SIMD mode, a register
in the PEy data register file is the explicit register and I0 is pointing to an
even address in internal memory. The data movement resulting from the
evaluation of the conditional test in the PEx and PEy processing elements
is shown in Table 3-34.

Example 3 Register-to-Register Move – PEx Explicit Registers

For the following instructions, the processor is operating in SIMD mode
and registers in the PEx data register file are used as the explicit registers.
The data movement resulting from the evaluation of the conditional test
in the PEx and PEy processing elements is shown in Table 3-35.

IF EQ R9 = R2;

IF EQ PX1 = R2;

IF EQ USTAT1 = R2;

Table 3-34. Register-to-Memory Moves – Complementary Pairs
(PEy Explicit Register)

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move occurs from s2 to
location I0

r2 transfers to location I0+1

1 0 s2 transfers to location I0 No data move occurs from r2 to
location I0 + 1

1 1 s2 transfers to location I0 r2 transfers to location I0 + 1

SIMD Mode and Sequencing

3-64 ADSP-2136x SHARC Processor Programming Reference

Example 4 Register-to-Register Move – PEy Explicit Register

For the following instructions, the processor is operating in SIMD mode
and registers in the PEy data register file are used as explicit registers. The
data movement resulting from the evaluation of the conditional test in the
PEx and PEy processing elements is shown in Table 3-36.

IF EQ R9 = S2;

IF EQ PX1 = S2;

IF EQ USTAT1 = S2;

Table 3-35. Register-to-Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move to registers r9,
px1, and ustat1 occurs

s2 transfers to registers s9, px2 and
ustat2

1 0 r2 transfers to registers r9,
px1, and ustat1

No data move to s9, px2, or ustat2
occurs

1 1 r2 transfers to registers r9,
px1, and ustat1

s2 transfers to registers s9, px2,
and ustat2

Table 3-36. Register-to-Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

0 0 No data move occurs No data move occurs

0 1 No data move to registers s9,
px and ustat1 occurs

r2 transfers to registers s9, px2,
and ustat2

ADSP-2136x SHARC Processor Programming Reference 3-65

Program Sequencer

Case #2: Uncomplimentary-to-Complementary
Register Move

In this case, data moves from an uncomplementary register (Ureg without
a SIMD complement) to a complementary register pair. The processor
executes the explicit move depending on the evaluation of the conditional
test in the PEx processing element. The processor executes the implicit
move depending on the evaluation of the conditional test in the PEy pro-
cessing element. In each processing element where the move occurs, the
content of the source register is duplicated in the destination register.

Note that while PX1 and PX2 are complementary registers, the combined
PX register has no complementary register. For more information, see
“Internal Data Bus Exchange” on page 5-7.

For the following instruction the processor is operating in SIMD mode.
The data movement resulting from the evaluation of the conditional test
in the PEx and PEy processing elements is shown in Table 3-37.

IF EQ R1 = PX;

1 0 s2 transfers to registers r9,
px1, and ustat1

NO data move to registers s9,
px2, and ustat2 occurs

1 1 s2 transfers to registers r9,
px1, and ustat1

r2 transfers to registers s9, px2,
and ustat2

Table 3-36. Register-to-Register Moves – Complementary Pairs (Cont’d)

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

SIMD Mode and Sequencing

3-66 ADSP-2136x SHARC Processor Programming Reference

Case #3: Complementary-to-Uncomplimentary
Register Move

In this case data moves from a complementary register pair to an uncom-
plementary register. The processor executes the explicit move to the
uncomplemented universal register, depending on the condition test in
the PEx processing element only. The processor does not perform an
implicit move.

For all of the following instructions, the processor is operating in SIMD
mode. The data movement resulting from the evaluation of the condi-
tional test in the PEx and PEy processing elements for all of the example
code samples are shown in Table 3-38.

IF EQ PX = R1;

Uncomplementary register to DAG move:

if EQ m1=PX;

DAG to uncomplementary register move:

if EQ PX = m1;

See also the examples in “Memory” in Chapter 5, Memory, on page 5-12.

Table 3-37. Uncomplimentary-to-Complementary Register Move

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

0 0 r1 remains unchanged s1 remains unchanged

0 1 r1 remains unchanged s1 gets px value

1 0 r1 gets px value s1 remains unchanged

1 1 r1 gets px value s1 gets px value

ADSP-2136x SHARC Processor Programming Reference 3-67

Program Sequencer

Note that PX1 and PX2 have compliments, but PX as a register is
uncomplementary.

DAG to DAG move:

if EQ m1 = i15;

Complimentary register to DAG move:

if EQ i6 = r9;

In all the cases described above, the behavior is the same. If the condition
in PEx is true, then only the transfer occurs.

For more details on PX register transfers, refer to “Internal Data Bus
Exchange” on page 5-7.

Case #4: External Memory or IOP Memory Space Data Move

Conditional data moves from a complementary register pair to an uncom-
plementary register with an access to IOP memory space results in
unexpected behavior and should not be used.

Table 3-38. Complementary-to-Uncomplimentary Move

Condition
in PEx

Condition
in PEy Result

AZx AZy Explicit Implicit

0 0 px remains unchanged no implicit move

0 1 px remains unchanged no implicit move

1 0 r1 40-bit explicit move to px no implicit move

1 1 r1 40-bit explicit move to px no implicit move

Interrupts and Sequencing

3-68 ADSP-2136x SHARC Processor Programming Reference

Example: Register-to-Memory Moves – IOP Memory
Space Data Move

For the following instructions the processor is operating in SIMD mode
and the explicit register is either a PEx register or PEy register. I0 points
to IOP memory space. This example shows indirect addressing. However,
the same results occur using direct addressing.

IF EQ DM(I0,M0) = R2;

IF EQ DM(I0,M0) = S2;

Case #5: Uncomplimentary Register Data Move

In the case of memory-to-DAG register moves, the transfer does not occur
when both PEx and PEy are false. Otherwise, if either PEx or PEy is true,
transfers to the DAG register occur. For example:

if EQ m13 = dm(i0,m1);

Case #6: Conditional DAG Operations

Conditional post-modify DAG operations update the DAG register based
on ORing of the condition tests on both processing elements. Actual data
movement involved in a conditional DAG operation is based on indepen-
dent evaluation of condition tests in PEx and PEy. Only the post-modify
update is based on the ORing of the these conditional tests.

Conditional pre-modify DAG operations behave differently. The DAGs
always pre-modify an index, independent of the outcome of the condition
tests on each processing element.

Interrupts and Sequencing
Interrupts are another type of nonsequential program flow that the
sequencer supports. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,

ADSP-2136x SHARC Processor Programming Reference 3-69

Program Sequencer

the sequencer processes a subroutine call to a predefined address, called
the interrupt vector. The processor assigns a unique vector to each type of
interrupt and assigns a priority to each interrupt based on the Interrupt
Vector Table (IVT) addressing scheme. For more information, see “Inter-
rupt Registers” in the ADSP-2136x SHARC Processor Hardware Reference
for the ADSP-21362/3/4/5/6 Processors and the ADSP-2136x SHARC Pro-
cessor Hardware Reference for the ADSP-21367/8/9 Processors.

The processor supports three prioritized, individually-maskable external
interrupts, each of which can be programmed to be either level- or
edge-triggered. External interrupts occur when an external device asserts
one of the processor’s interrupt inputs (IRQ2–0). The processor also sup-
ports internally generated interrupts. An internal interrupt can occur due
to arithmetic exceptions, stack overflows, DMA completion and/or
peripheral data buffer status, or circular data buffer overflows. Several fac-
tors control the processor’s response to an interrupt. When an interrupt
occurs, the interrupt is synchronized and latched in the interrupt latch
register (IRPTL). The processor responds to an interrupt request if:

• The processor is executing instructions or is in an idle state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches the
program execution with a call to the corresponding interrupt vector
address. Within the processor’s program memory, the interrupt vectors are
grouped in an area called the interrupt vector table (IVT). The interrupt
vectors in this table are spaced at 4-instruction intervals. Longer service
routines can be accommodated by branching to another region of mem-
ory. Program execution returns to normal sequencing when return from
interrupt (RTI) instruction is executed. Each interrupt vector has associ-
ated latch and mask bits.

Interrupts and Sequencing

3-70 ADSP-2136x SHARC Processor Programming Reference

The ADSP-2136x processor also has extensive programmable interrupt
support. These interrupts are described in the hardware references.

To process an interrupt, the processor’s program sequencer:

1. Outputs the appropriate interrupt vector address

2. Pushes the current PC value (the return address) onto the PC stack

3. Pushes the current value of the ASTATx/y and MODE1 registers onto
the status stack (if the interrupt is IRQ2–0 or timer)

4. Resets the appropriate bit in the interrupt latch register (IRPTL and
LIRPTL registers)

5. Alters the interrupt mask pointer bits (IMASKP) to reflect the cur-
rent interrupt nesting state, depending on the nesting mode. The
NESTM bit in the MODE1 register determines whether all the inter-
rupts or only the lower priority interrupts are masked during the
service routine.

At the end of the interrupt service routine, the sequencer processes the
return from interrupt (RTI) instruction and performs the following
sequence.

1. Returns to the address stored at the top of the PC stack

2. Pops this value off the PC stack

3. Pops the status stack (if the ASTATx,y and MODE1 status registers
were pushed for the IRQ2–0, or timer interrupt)

4. Clears the appropriate bit in the interrupt mask pointer (IMASKP)

Between servicing and returning, the sequencer clears the latch bit of the
in-progress ISR every cycle until the RTI is executed. When using an ISR,
writes into an IOP register (except the serial ports) to clear the interrupt
causes some latency. During this delay, the interrupt may be generated a

ADSP-2136x SHARC Processor Programming Reference 3-71

Program Sequencer

second time. Refer to the “Core Access to IOP Registers” section in the
ADSP-21362/3/4/5/6 and ADSP-21367/8/9 hardware references for
information on avoiding this.

Except for reset, all interrupt service routines should end with a
return-from-interrupt (RTI) instruction. After reset, the PC stack is empty,
so there is no return address. The last instruction of the reset service rou-
tine should be a JUMP to the start of the program.

If programs force an interrupt by writing to a bit in the IRPTL register, the
processor recognizes the interrupt in the following cycle, and four cycles
of branching to the interrupt vector follow the recognition cycle.

The processor responds to interrupts in three stages: synchronization (1
cycle), latching and recognition (1 cycle), and branching to the interrupt
vector (4 cycles). Table 3-39, Table 3-40, and Table 3-41 show the pipe-
lined execution cycles for interrupt processing.

Table 3-39. Pipelined Execution Cycles for Interrupt Based During Single
Cycle Instruction

Cycles 1 2 3 4 5 6 7

Execute n–2 n–1 nop nop nop nop v

Address n–1 n→nop nop nop nop v v+1

Decode n n+1→nop n+2→nop n+3→nop v v+1 v+2

Fetch2 n+1 n+2 n+3 v v+1 v+2 v+3

Fetch1 n+2 n+3 v v+1 v+2 v+3 v+4

1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: n is pushed onto PC stack, fetch of vector address starts.

Interrupts and Sequencing

3-72 ADSP-2136x SHARC Processor Programming Reference

Table 3-40. Pipelined Execution Cycles for Interrupt During Delayed
Branch Instruction

Cycles 1 2 3 4 5 6 7 8 9 10

Execute n–1 n n+1 n+2 nop nop nop nop nop v

Address n n+1 n+2 nop j→nop nop nop nop v v+1

Decode n+1 n+2 n+3→
nop

j j+1→
nop

j+2→
nop

j+3→
nop

v v+1 v+2

Fetch2 n+2 n+3 j j+1 j+2 j+3 v v+1 v+2 v+3

Fetch1 n+3 j j+1 j+2 j+3 v v+1 v+2 v+3 v+4

N is the delayed branch instruction, J is the jump address, and V is the interrupt vector.

1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: N+3 beyond delay slot, interrupt processing delayed.
4. Cycle4: Interrupt processing delayed.
5. Cycle5: Interrupt processed.
6. Cycle6: J pushed onto PC stack, fetch of vector address starts.

Table 3-41. Pipelined Execution Cycles for Interrupt During Instruction
With Conflicting PM Data Access (Instruction not Cached)

Cycles 1 2 3 4 5 6 7 8 9

Execute n–2 n–1 n nop nop nop nop nop v

Address n–1 n nop n+1→
nop

nop nop nop v v+1

Decode n n+1→
nop

n+1 n+2→
nop

n+3→
nop

n+4→
nop

v v+1 v+2

Fetch2 n+1 n+2 n+2 n+3 n+4 v v+1 v+2 v+3

Fetch1 n+2 – n+3 n+4 v v+1 v+2 v+3 v+4

n is the conflicting instruction, v is the interrupt vector instruction.

1. Cycle1: Interrupt occurs.
2. Cycle2: Interrupt is latched and recognized, but not processed.
3. Cycle3: PM data access stall cycle, n+3 cached interrupt not processed.
4. Cycle4: Interrupt processed.
5. Cycle5: n+1 pushed onto PC stack, fetch of vector address starts.

ADSP-2136x SHARC Processor Programming Reference 3-73

Program Sequencer

When an interrupt is caused by the execution of an instruction other than
through the direct manipulation of the IRPTL register, the interrupt occurs
when the instruction is in the execute stage of the pipeline. The IRPTL reg-
ister is updated when the sequencer starts fetching the vector address in
the following cycle.

For most interrupts, both internal and external, only one instruction is
executed after the interrupt occurs (and four instructions are aborted),
before the processor fetches and decodes the first instruction of the service
routine. Interrupt processing starts two cycles after an arithmetic excep-
tion occurs because of the one cycle delay between an arithmetic exception
and the STKYx,y register update. There is also a five cycle latency associ-
ated with the IRQ2–0 interrupts. If an interrupt is latched by explicitly
writing into the IRPTL register, then two instructions are executed after
that cycle in which IRPTL is written.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one additional cycle. This delay allows the first
instruction of the lower priority interrupt routine to be executed before it
is interrupted. For more information, see “Nesting Interrupts” on
page 3-79.

Certain processor operations that span more than one cycle or which
occur at a certain state of the instruction pipeline that involves a change of
program flow hold off interrupt processing. If an interrupt occurs during
one of these operations, the processor synchronizes and latches the inter-
rupt, but delays its processing. The operations that have delayed interrupt
processing are:

• A branch (JUMP or CALL) instruction and the following two cycles,
whether they are instructions (in a delayed branch) or a NOP (in a
non-delayed branch)

Interrupts and Sequencing

3-74 ADSP-2136x SHARC Processor Programming Reference

• In addition to the above, the cycle in which a branch is in the
address stage of the pipeline along with the last instruction of a
counter based loop in the fetch1 stage

• The first of the two cycles used to perform a program memory data
access and an instruction fetch (a bus conflict) when the instruc-
tion is not cached

• In the case of arithmetic loops, the cycle in which the loop aborts
and the following three cycles

• In the case of counter based loops:

• The cycle in which the counter-expired condition tests true
and the following three cycles in the case of loops having
less than four instructions in the body

• The cycle in which the DO UNTIL LCE instruction executes
and the following cycle for a loop that is composed of one,
two or four instructions

• The first four of the five cycles used to fetch and execute the first
instruction of an interrupt service routine

• Any cycle in which the core access of internal memory is delayed
due to a conflict with the DMA, or the access to the memory-
mapped registers is delayed due to wait states

Sensing External Interrupts
For external interrupt pins IRQ2–0, the processor supports two types of
interrupt sensitivity—edge-sensitive and level-sensitive.

The processor detects a level-sensitive interrupt if the signal input is low
(active) when sampled on the rising edge of CLKIN. A level-sensitive inter-
rupt must go high (inactive) before the processor returns from the
interrupt service routine. If a level-sensitive interrupt is still active when

ADSP-2136x SHARC Processor Programming Reference 3-75

Program Sequencer

the processor samples it after returning from its service routine, the pro-
cessor treats the signal as a new request. The processor repeats the same
interrupt routine without returning to the main program, assuming no
higher priority interrupts are active.

The processor detects an edge-sensitive interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of CLKIN. An edge-sensitive interrupt signal can stay active
indefinitely without triggering additional interrupts. To request another
interrupt, the signal must go high, then low again.

Edge-sensitive interrupts require less external hardware compared to
level-sensitive requests, because negating the request is unnecessary. An
advantage of level-sensitive interrupts is that multiple interrupting devices
may share a single level-sensitive request line on a wired OR basis, allow-
ing easy system expansion.

The MODE2 register controls external interrupt sensitivity as described
below.

• Interrupt 0 Sensitivity. Bit 0 (IRQ0E) directs the processor to detect
IRQ0 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 1 Sensitivity. Bit 1 (IRQ1E) directs the processor to detect
IRQ1 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 2 Sensitivity. Bit 2 (IRQ2E) directs the processor to detect
IRQ2 as edge-sensitive (if 1) or level-sensitive (if 0).

Table B-3 on page B-11 lists all of the bits in the MODE2 register.

The processor accepts external interrupts that are asynchronous to the
processor’s clock (CLKIN), allowing external interrupt signals to change at
any time. An external interrupt must be held low at least one CLKIN cycle
to guarantee that the processor samples the signal.

Interrupts and Sequencing

3-76 ADSP-2136x SHARC Processor Programming Reference

External interrupts must meet the setup and hold time require-
ments relative to the rising edge of CLKIN. For information on
interrupt signal timing requirements, see the appropriate
ADSP-2136x processor data sheet.

Masking Interrupts
The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the RESET and EMU interrupts, all interrupts are
maskable. If a masked interrupt is latched, the processor responds to the
latched interrupt if it is later unmasked.

Interrupts can be masked globally or selectively. Bits in the MODE1, IMASK,
and LIRPTL registers control interrupt masking as shown in Table B-2 on
page B-5 and in the hardware references.

All interrupts are masked at reset except for the non-maskable and boot
interrupts. For booting, the processor automatically unmasks and uses the
parallel port interrupt (PPI or programmable interrupt 9) or high priority
SPI port (default SPIHI or programmable interrupt 1) interrupt after reset.
Usage depends on whether the processor is booting from an EPROM, or
an SPI master or slave.

Latching Interrupts
When the processor recognizes an interrupt, the processor’s interrupt latch
(IRPTL and LIRPTL) registers set a bit (latch) to record that the interrupt
occurred. The bits set in these registers indicate interrupts that are cur-
rently being latched and are pending for execution. Because these registers
are readable and writable, any interrupt except reset (RSTI) and emulator
(EMUI) can be set or cleared in software.

When an interrupt occurs, the sequencer sets the corresponding bit in
IRPTL or LIRPTL register. Throughout the execution of the interrupt’s ser-
vice routine, the processor clears this bit during every cycle. This prevents

ADSP-2136x SHARC Processor Programming Reference 3-77

Program Sequencer

the same interrupt from being latched while its service routine is execut-
ing. After the return from interrupt (RTI), the sequencer stops clearing the
latch bit.

If necessary, an interrupt can be reused while it is being serviced. (This is a
matter of disabling this automatic clearing of the latch bit.) For more
information, see “Reusing Interrupts” on page 3-81.

The interrupt latch bits in IRPTL correspond to interrupt mask bits in the
IMASK register. In both registers, the interrupt bits are arranged in their
order of priority. The interrupt priority is from 0 (highest) to 31 (lowest).
Interrupt priority determines which interrupt must be serviced first, when
more than one interrupt occurs in the same cycle. Priority also determines
which interrupts are nested when the processor has interrupt nesting
enabled. For more information, see “Nesting Interrupts” on page 3-79.

Several events can cause arithmetic interrupts. They are fixed-point over-
flow (FIXI) and floating-point overflow (FLTOI), underflow (FLTUI), and
invalid operation (FLTII). To determine which event caused the interrupt,
a program can read the arithmetic status flags in the STKYx or STKYy status
registers. Table B-5 on page B-20 lists the bits in these registers. Service
routines for arithmetic interrupts must clear the appropriate STKYx or
STKYy bits to clear the interrupt. If the bits are not cleared, the interrupt is
still active after the return from interrupt (RTI).

Status bits in STKYy apply only in SIMD mode. For more informa-
tion, see “SIMD (Computational) Operations” on page 2-49.

One event can cause multiple interrupts. The timer decrementing to zero
causes two timer expired interrupts to be latched, TMZHI (high priority)
and TMZLI (low priority). This feature allows selection of the priority for
the timer interrupt. Programs should unmask the timer interrupt with the
desired priority and leave the other one masked. If both interrupts are
unmasked, the processor services the higher priority interrupt first and
then services the lower priority interrupt.

Interrupts and Sequencing

3-78 ADSP-2136x SHARC Processor Programming Reference

The IRPTL register also provides four software interrupts. When a program
sets the latch bit for one of these interrupts (SFT0I, SFT1I, SFT2I, or
SFT3I), the sequencer services the interrupt, and the processor branches to
the corresponding interrupt routine. Software interrupts have the same
behavior as all other maskable interrupts.

Stacking Status During Interrupts
In an interrupt driven system, the processor must be restored to its
pre-interrupt state after an interrupt is serviced. The sequencer’s status
stack eases the return from an interrupt by eliminating some interrupt ser-
vice overhead like register saves and restores.

The status stack is fifteen locations deep. The stack is full when all entries
are occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is already full. Bits in the STKYx register indi-
cate the status stack full and empty states as describe below.

• Status stack overflow. Bit 23 (SSOV) indicates that the status stack
is overflowed (if 1) or not overflowed (if 0)—a sticky bit.

• Status stack empty. Bit 24 (SSEM) indicates that the status stack is
empty (if 1) or not empty (if 0)—not sticky, cleared by a PUSH.

Table B-5 on page B-20 lists all of the bits in the STKYx register.

For some interrupts, (IRQ2–0 and timer expired), the sequencer automati-
cally pushes the ASTATx, ASTATy, and MODE1 registers onto the status stack.
When the sequencer pushes an entry onto the status stack, the processor
uses the MMASK register to clear the corresponding bits in the MODE1 register.
All other bit settings remain the same. For more information and an
example of how the MMASK and MODE1 registers work together, see “Mode
Mask Register (MMASK)” on page B-7.

ADSP-2136x SHARC Processor Programming Reference 3-79

Program Sequencer

The sequencer automatically pops the ASTATx, ASTATY, and MODE1 registers
from the status stack during the return from interrupt instruction (RTI).
In one other case, JUMP (CI), the sequencer pops the stack. For more infor-
mation, see “Reusing Interrupts” on page 3-81. Only the IRQ2–0 and
timer expired interrupts cause the sequencer to push an entry onto the sta-
tus stack. All other interrupts require either explicit saves and restores of
effected registers or an explicit push or pop of the stack (PUSH/POP STS).

Pushing the ASTATx, ASTATy, and MODE1 registers preserves the status and
control bit settings. This allows a service routine to alter these bits with
the knowledge that the original settings are automatically restored upon
return from the interrupt.

The top of the status stack contains the current values of ASTATx, ASTATy,
and MODE1. Reading and writing these registers does not move the stack
pointer. Explicit PUSH or POP instructions do move the status stack pointer.

Nesting Interrupts
The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the MODE1, IMASKP,
and LIRPTL registers control interrupt nesting as described below.

• Interrupt nesting enable. MODE1 Bit 11 (NESTM). This bit directs the
processor to enable (if 1) or disable (if 0) interrupt nesting.

• Interrupt mask and interrupt mask pointer. MSKP and IMASKP bits.
These bits list the interrupts in priority order and provide a tempo-
rary interrupt mask for each nesting level.

Table B-2 on page B-5 lists all of the bits in the MODE1 register. For more
information about the IMASKP register and LIRPTL register, see the hard-
ware reference manuals.

Interrupts and Sequencing

3-80 ADSP-2136x SHARC Processor Programming Reference

When interrupt nesting is enabled, a higher priority interrupt can inter-
rupt a lower priority interrupt’s service routine. Lower priority interrupts
are latched as they occur, but the processor processes them according to
their priority after the nested routines finish.

When interrupt nesting is disabled, a higher priority interrupt cannot
interrupt a lower priority interrupt’s service routine. Interrupts are latched
as they occur and the processor processes them in the order of their occur-
rence, after the active routine finishes.

Programs should change the interrupt nesting enable (NESTM) bit only
while outside of an interrupt service routine or during the reset service
routine.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one cycle. This delay allows the first instruction of
the lower priority interrupt routine to be executed, before it is
interrupted.

When servicing nested interrupts, the processor uses the interrupt mask
pointer (IMASKP) to create a temporary interrupt mask for each level of
interrupt nesting but the IMASK value is not effected. The processor
changes IMASKP each time a higher priority interrupt interrupts a lower
priority service routine.

The bits in IMASKP correspond to the interrupts in their order of priority.
When an interrupt occurs, the processor sets its bit in IMASKP. If nesting is
enabled, the processor uses IMASKP to generate a new temporary interrupt
mask, masking all interrupts of equal or lower priority to the highest pri-
ority bit set in IMASKP and keeping higher priority interrupts the same as
in IMASK. When a return from an interrupt service routine (RTI) is exe-
cuted, the processor clears the highest priority bit set in IMASKP and
generates a new temporary interrupt mask.

ADSP-2136x SHARC Processor Programming Reference 3-81

Program Sequencer

The processor masks all interrupts of equal or lower priority to the highest
priority bit set in IMASKP. The bit set in IMASKP that has the highest prior-
ity always corresponds to the priority of the interrupt being serviced.

The MSKP bits in the LIRPTL register and the entire set of IMASKP registers
are for interrupt controller use only. Modifying these bits interferes with
the proper operation of the interrupt controller. Furthermore, explicit bit
manipulation of any of the bits in the LIRPTL register, while IRPTEN (bit 12
in the MODE1 register) is set, causes an interrupt to be serviced twice.

Reusing Interrupts
When an interrupt occurs, the sequencer sets the corresponding bit in the
IRPTL register. During execution of the service routine, the sequencer
keeps this bit cleared which prevents the same interrupt from being
latched while its service routine is already executing. If necessary, pro-
grams may reuse an interrupt while it is being serviced. Using a jump clear
interrupt instruction, (JUMP (CI)) in the interrupt service routine clears
the interrupt, allowing its reuse while the service routine is executing.

The JUMP (CI) instruction reduces an interrupt service routine to a nor-
mal subroutine, clearing the appropriate bit in the interrupt latch and
interrupt mask pointer and popping the status stack. After the JUMP (CI)
instruction, the processor stops automatically clearing the interrupt’s latch
bit, allowing the interrupt to latch again.

When returning from a subroutine entered with a JUMP (CI) instruction, a
program must use a return loop reentry instruction RTS (LR), instead of an
RTI instruction. For more information, see “Restrictions on Ending
Loops” on page 3-43. The following example shows an interrupt service
routine that is reduced to a subroutine with the (CI) modifier.

instr1; /*Interrupt entry from main program*/

JUMP(PC,4) (DB,CI); /*Clear interrupt status*/

Interrupts and Sequencing

3-82 ADSP-2136x SHARC Processor Programming Reference

instr3;

instr4;

instr5;

instr6;

RTS (LR); /*Use LR modifier with return from subroutine*/

The JUMP (PC,4)(DB,CI) instruction only continues linear execution flow
by jumping to the location PC + 4 (instr6). The two intervening instruc-
tions (instr3, instr4) are executed and instr5 aborted because of the
delayed branch (DB). This JUMP instruction is only an example—a JUMP
(CI) can perform a JUMP to any location.

Interrupting IDLE
The sequencer supports placing the processor in IDLE—a special instruc-
tion that halts the processor core in a low power state. The processor is in
the halt state until an external interrupt, timer interrupt, or DMA inter-
rupt occurs and the ISR executed. When executing an IDLE instruction,
the sequencer fetches one more instruction at the current fetch address
and then suspends the operation. The processor’s I/O processor is not
affected by the IDLE instruction—DMA transfers to or from internal
memory continue uninterrupted. The processor’s internal clock and timer
(if enabled) continue to run during IDLE. When an external interrupt, or
timer interrupt occurs, the processor responds normally. After a five cycle
latency to fetch the first instruction of the interrupt service routine, the
processor continues to execute the instructions normally.

ADSP-2136x SHARC Processor Programming Reference 3-83

Program Sequencer

Summary
To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address.

With selective caching, the instruction cache lets the processor access data
in program memory and fetch an instruction (from the cache) in the same
cycle. The DAG2 data address generator outputs program memory data
addresses.

The sequencer evaluates conditional instructions and loop termination
conditions by using information from the status registers. The loop
address stack and loop counter stack support nested loops. The status
stack stores status registers for implementing nested interrupt routines.

Figure 3-4 identifies all the functional blocks and their relationship to one
another in detail.

Summary

3-84 ADSP-2136x SHARC Processor Programming Reference

Figure 3-4. Program Sequencer Block Diagram

MODE1 MODE2 ASTATX USTAT1 UST AT3

TPERIOD

TCOUNT

DECREMENT

MULTIPLEXER

TCOUNT=0

+

PC-RELATIVE
ADDRESS

DIRECT
BRANCH

INTERRUPT LATCH
(IRPTL)

INTERRUPT MASK
(IMASK)

INTERRUPT MASK
POINTER (IMASKP)

INTERRUPT
CONT ROLLER

PROGRAM
COUNTER STACK

TOP OF PC
STACK (PCSTK)

PC STACK
POINTER (PCSTKP)

FETCH
ADDRESS
(FADDR)

DECODE
ADDRESS
(DADDR)

PROGRAM
COUNTER

(PC)

NEXT ADDRESS MULTIPLEXER

INSTRUCT ION
CACHE

INSTRUCTION
LATCH

OTHER
INTERRUPTS

TIMEXP

YES

NO

INTERRUPT
VECTOR

RETURN ADDRESS
OR TOP OF LOOP

ADDRESS
FROM DAG2

INDIRECT
BRANCH

INSTRUCTION PIPELINE

LOOP ADDRESS
STACK

(LADDR)

LOOP COUNT STACK
(CURLCNTR, LCNTR)

LOOP CONTROL

CONDITION
LOGIC

INPUT
FLAGS

DM DATA BUS PM ADDRESS BUS PM DATA BUS

REPEATED
ADDRESS

(IDLE)

NEXT
ADDRESS
(LINEAR
FLOW)

+1

32 32 32

24

ASTATY USTAT2 USTAT4STKYX STKYY

BRANCH
CONTROL

ADSP-2136x SHARC Processor Programming Reference 3-85

Program Sequencer

Table 3-10 on page 3-23 and Table 3-11 on page 3-24 list the registers
within and related to the program sequencer. All registers in the program
sequencer are universal registers (Uregs), so they are accessible to other
universal registers and to data memory. All of the sequencer’s registers and
the top of stacks are readable and writable, except for the fetch, decode,
and PC. Pushing or popping the PC stack is done with a write to the PC
stack pointer, which is readable and writable. Pushing or popping the loop
address stack requires explicit instructions.

A set of system control registers configures or provides input to the
sequencer. These registers appear across the top and within the interrupt
controller and are shown in Figure 3-1 on page 3-3. A bit manipulation
instruction permits setting, clearing, toggling, or testing specific bits in
the system registers. For information on this instruction (bit) and the
ADSP-2136x Instruction Set, see “Instruction Set” in Chapter 8, Instruc-
tion Set, and “Computations Reference” in Chapter 9, Computations
Reference. Writes to some of these registers do not take effect on the next
cycle. For example, after a write to the MODE1 register enables ALU satura-
tion mode, the change takes effect two cycles after the write. Also, some of
these registers do not update on the cycle immediately following a write.
An extra cycle is required before a register read returns the new value.

Summary

3-86 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference 4-1

4 DATA ADDRESS
GENERATORS

The processor’s data address generators (DAGs) generate addresses for
data moves to and from data memory (DM) and program memory (PM).
By generating addresses, the DAGs let programs refer to addresses indi-
rectly, using a DAG register instead of an absolute address. The DAGs
architecture, which appears in Figure 4-1, supports several functions that
minimize overhead in data access routines. These functions include:

• Supply address and post-modify. Provides an address during a data
move and auto-increments the stored address for the next move.

• Supply pre-modified address. Provides a modified address during a
data move without incrementing the stored address.

• Modify address. Increments the stored address without performing
a data move.

• Bit-reverse address. Provides a bit-reversed address during a data
move without reversing the stored address, as well as an instruction
to explicitly bit-reverse the supplied address.

• Broadcast data moves. Performs dual data moves to complemen-
tary registers in each processing element to support
single-instruction multiple-data (SIMD) mode.

• Circular Buffering. Supports addressing a data buffer with pre-
defined boundaries, wrapping around to cycle through this buffer
repeatedly in a circular pattern.

Setting DAG Modes

4-2 ADSP-2136x SHARC Processor Programming Reference

As shown in Figure 4-1, each DAG has four types of registers. These regis-
ters hold the values that the DAG uses for generating addresses. The four
types of registers are:

• Index registers (I0–I7 for DAG1 and I8–I15 for DAG2). An
index register holds an address and acts as a pointer to memory.
For example, the DAG interprets DM(I0,0) and PM(I8,0) syntax in
an instruction as addresses.

• Modify registers (M0–M7 for DAG1 and M8–M15 for DAG2).
A modify register provides the increment or step size by which an
index register is pre- or post-modified during a register move. For
example, the DM(I0,M1) instruction directs the DAG to output the
address in register I0 then modify the contents of I0 using the M1
register.

• Length and base registers (L0–L7 and B0–B7 for DAG1 and L8–
L15 and B8–B15 for DAG2). Length and base registers set the
range of addresses and the starting address for a circular buffer. For
more information on circular buffers, see “Addressing Circular
Buffers” on page 4-13.

Setting DAG Modes
The MODE1 register controls the operating mode of the DAGs as described
below.

• Circular buffering enable. Bit 24 (CBUFEN) enables (if 1) or disables
(if 0) circular buffering.

• Broadcast register loading enable, DAG1-I1. Bit 23 (BDCST1)
enables register broadcast loads to complementary registers from I1
indexed moves (if 1) or disables broadcast loads (if 0).

ADSP-2136x SHARC Processor Programming Reference 4-3

Data Address Generators

• Broadcast register loading enable, DAG2–I9. Bit 22 (BDCST9)
enables register broadcast loads to complementary registers from I9
indexed moves (if 1) or disables broadcast loads (if 0).

• SIMD mode enable. Bit 21 (PEYEN) enables computations in
PEy—SIMD mode—(if 1) or disables PEy—SISD mode—(if 0).
For more information on SIMD mode, see “SIMD (Computa-
tional) Operations” on page 2-49.

• Secondary registers for DAG2 lo, I, M, L, B8-11. Bit 6 (SRD2L)
Secondary registers for DAG2 hi, I, M, L, B12–15. Bit 5 (SRD2H)
Secondary registers for DAG1 lo, I, M, L, B0–3. Bit 4 (SRD1L)

Figure 4-1. Data Address Generator (DAG) Block Diagram

STKYX

MODE1

MUX

ADD

L
REGISTERS

8 X 32

32

32

3232

BIT-REVERSE
I0 (DAG1) OR I8 (DAG2) ONLY.

(OPTIONAL)
FOR ALL I REGISTERS

USING BITREV INSTRUCTIONS

B
REGISTERS

8 X 32

DM ADDRESS BUS (DAG1)

PM ADDRESS BUS (DAG2)

32 32

DM/PM DATA BUS

I
REGISTERS

8 X 32

M
REGISTERS

8 X 32

MODULAR
LOGIC

3232 FROM
INSTRUCTION

MUX

MUX

FOR INTERRUPTS

FOR BITREV
INSTRUCTION

32

32
UPDATE

32

Setting DAG Modes

4-4 ADSP-2136x SHARC Processor Programming Reference

Secondary registers for DAG1 hi, I, M, L, B4–7. Bit 3 (SRD1H)
These bits select the corresponding secondary register set (if 1) or
select the corresponding primary register set—the set that is avail-
able at reset—(if 0).

• Bit-reverse addressing enable, DAG1–I0. Bit 1 (BR0) enables
bit-reversed addressing on I0 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

• Bit-reverse addressing enable, DAG2–I8. Bit 0 (BR8) enables
bit-reversed addressing on I8 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

Table B-2 on page B-5 lists all of the bits in the MODE1register.

Circular Buffering Mode
The CBUFEN bit in the MODE1 register enables circular buffering—a mode
where the DAG supplies addresses that range within a constrained buffer
length (set with an L register). Circular buffers start at a base address (set
with a B register), and increment addresses on each access by a modify
value (set with an M register).

The circular buffer enable bit (CBUFEN) in the MODE1 register is cleared (= 0)
upon reset.

On previous SHARC processors (ADSP-21060/1/2 and
ADSP-21065L), circular buffering is always enabled. For code
compatibility, programs ported to the ADSP-2136x processors
should include the instruction:

Bit Set Mode1 CBUFEN;

ADSP-2136x SHARC Processor Programming Reference 4-5

Data Address Generators

For more information on setting up and using circular buffers, see
“Addressing Circular Buffers” on page 4-13. When using circular buffers,
the DAGs can generate an interrupt on buffer overflow (wraparound). For
more information, see “Using DAG Status” on page 4-9.

Broadcast Loading Mode
The BDCST1 and BDCST9 bits in the MODE1 register enable broadcast loading.
An example of broadcast loading is when a program uses one load com-
mand to load multiple registers. When the BDCST1 bit is set (=1), the DAG
performs a dual data register load on instructions that use the I1 register
for the address. The DAG loads both the named register (explicit register)
in one processing element and loads that register’s complementary register
(implicit register) in the other processing element. The BDCST9 bit in the
MODE1 register enables this feature for the I9 register.

Enabling either DAG register to perform a broadcast load has no effect on
register stores or loads to universal registers (Uregs). The one exception is
the register file data registers. Table 4-1 demonstrates the effects of a regis-
ter load operation on both processing elements with register load
broadcasting enabled. In Table 4-1, note that Rx and Sx are complemen-
tary data registers.

Setting DAG Modes

4-6 ADSP-2136x SHARC Processor Programming Reference

The PEYEN bit (SISD/SIMD mode select) does not influence broad-
cast operations. Broadcast loading is particularly useful in SIMD
applications where the algorithm needs identical data loaded into
each processing element. For more information on SIMD mode (in
particular, a list of complementary data registers), see “SIMD
(Computational) Operations” on page 2-49.

Alternate (Secondary) DAG Registers
To facilitate fast context switching, the processor includes alternate regis-
ter sets for all DAG registers. Bits in the MODE1 register control when
alternate registers become accessible. While inaccessible, the contents of
alternate registers are not affected by processor operations. Note that there
is a one cycle latency between writing to MODE1 and being able to access an
alternate register set. The alternate register sets for the DAGs are described
in this section. For more information on alternate data and results regis-
ters, see “Alternate (Secondary) Data Registers” on page 2-39.

Table 4-1. Dual Processing Element Register Load Broadcasts

Instruction syntax Rx = DM(I1,Ma); {Syntax #1}
Rx = PM(I9,Mb); {Syntax #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Syntax #3}

PEx explicit operations Rx = DM(I1,Ma); {Explicit #1}
Rx = PM(I9,Mb); {Explicit #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Explicit #3}

PEy implicit operations Sx = DM(I1,Ma); {Implicit #1}
Sx = PM(I9,Mb); {Implicit #2}
Sx = DM(I1,Ma), Sx = PM(I9,Mb); {Implicit #3}

1.Note that the letters a and b (as in Ma or Mb) indicate numbers for modify registers in
DAG1 and DAG2. The letter a indicates a DAG1 register and can be replaced with
0 through 7. The letter b indicates a DAG2 register and can be replaced with 8 through 15.

ADSP-2136x SHARC Processor Programming Reference 4-7

Data Address Generators

Bits in the MODE1 register can activate alternate register sets within the
DAGs: the lower half of DAG1 (I, M, L, B0–3), the upper half of DAG1
(I, M, L, B4–7), the lower half of DAG2 (I, M, L, B8–11), and the upper half
of DAG2 (I, M, L, B12–15). Figure 4-2 shows the primary and alternate
register sets of the DAGs.

To share data between contexts, a program places the data to be shared in
one half of either the current data address generator’s registers or the other
DAG’s registers and activates the alternate register set of the other half.
The following example demonstrates how the code handles the one cycle
latency from the instruction that sets the bit in MODE1 to when the

Figure 4-2. Data Address Generator Primary and Alternate Registers

I0

I1

I2

I3

M0

M1

M2

M3

L0

L1

L2

L3

B0

B1

B2

B3

SRD1L

I4

I5

I6

I7

M4

M5

M6

M7

L4

L5

L6

L7

B4

B5

B6

B7

SRD1H

I8

I9

I10

I11

M8

M9

M10

M11

L8

L9

L10

L11

B8

B9

B10

B11

SRD2L

I12

I13

I14

I15

M12

M13

M14

M15

L12

L13

L14

L15

B12

B13

B14

B15

SRD2H

MODE1 SELECT BIT DAG1 REGISTERS (DATA MEMORY)

DAG2 REGISTERS (PROGRAM MEMORY)

Setting DAG Modes

4-8 ADSP-2136x SHARC Processor Programming Reference

alternate registers may be accessed. Note that programs can use a NOP
instruction or any other instruction not related to the DAG to take care of
this latency.

Example 1

BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */

NOP; /* Wait for access to alternates */

R0 = DM(i0,m1);

Example 2

BIT SET MODE1 SRD1L; /*activate alternate dag1 lo registers */

R13 = R12 + R11; /* Any unrelated instruction */

R0 = DM(I0,M1);

Bit-Reverse Addressing Mode
The BR0 and BR8 bits in the MODE1 register enable the bit-reverse addressing
mode where addresses are output in reverse bit order. When BR0 is set
(=1), DAG1 bit-reverses 32-bit addresses output from I0. When BR8 is set
(=1), DAG2 bit-reverses 32-bit addresses output from I8. The DAGs
bit-reverse only the address output from I0 or I8; the contents of these
registers are not reversed. Bit-reverse addressing mode effects both
pre-modify and post-modify operations. The following example demon-
strates how bit-reverse mode effects address output:

BIT SET MODE1 BR0; /* Enables bit-rev. addressing for DAG1 */

IO=0x83000 /* Loads I0 with the bit reverse of the

 buffer’s base address DM(0xC1000) */

M0 = 0x4000000; /* Loads M0 with value for post-modify, which

 is the bit reverse value of the modifier

 value M0 = 32 */

ADSP-2136x SHARC Processor Programming Reference 4-9

Data Address Generators

R1 = DM(I0,M0); /* Loads R1 with contents of DM address

 DM(0xC1000), which is the bit-reverse of
 0x83000, then post–modifies I0 for the next

 access with (0x83000 + 0x4000000) =

 0x4083000, which is the bit-reverse of

 DM(0xC1020) */

In addition to bit-reverse addressing, the processor supports a bit-reverse
instruction (BITREV). This instruction bit-reverses the contents of the
selected register. For more information on the BITREV instruction, see
“Modifying DAG Registers” on page 4-19 or “Instruction Set” in
Chapter 8, Instruction Set, and “Computations Reference” in Chapter 9,
Computations Reference.

Using DAG Status
The DAGs can provide addressing for a constrained range of addresses,
repeatedly cycling through this data (or buffer). A buffer overflow (or
wraparound) occurs each time the DAG wraps around the start or end of a
buffer’s base address. (See “Addressing Circular Buffers” on page 4-13.)

The DAGs can provide buffer overflow information when executing circu-
lar buffer addressing for the I7 or I15 registers. When a buffer overflow
occurs (a circular buffering operation increments the I register past the
end of the buffer or decrements below the start of the buffer), the appro-
priate DAG updates a buffer overflow flag in a sticky status (STKYx)
register. A buffer overflow can also generate a maskable interrupt. Two
ways to use buffer overflows from circular buffering are:

• Interrupts. Enable interrupts and use an interrupt service routine
(ISR) to handle the overflow condition immediately. This method
is appropriate if it is important to handle all overflows as they
occur; for example in a “ping-pong” or swap I/O buffer pointers
routine.

DAG Operations

4-10 ADSP-2136x SHARC Processor Programming Reference

• STKYx registers. Use the BIT TST instruction to examine overflow
flags in the STKY register after a series of operations. If an overflow
flag is set, the buffer has overflowed—wrapped around—at least
once. This method is useful when overflow handling is not time
sensitive.

DAG Operations
The processor’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 4-1, the DAG registers and the MODE1 and
MODE2 registers contribute to DAG operations. The STKYx registers may be
affected by the DAG operations and are used to check the status of a DAG
operation. The following sections provide details on DAG operations:

• “Addressing With DAGs” on page 4-10

• “Addressing Circular Buffers” on page 4-13

• “Modifying DAG Registers” on page 4-19

An important item to note from Figure 4-1 is that the DAG automatically
adjusts the output address per the word size of the address location (short
word, normal word, or long word). This address adjustment lets internal
memory use the address directly.

SISD/SIMD mode, access word size, and data location (internal)
all influence data access operations.

Addressing With DAGs
The DAGs support two types of modified addressing, pre- and post-mod-
ify. Modified addressing is used to generate an address that is incremented
by a value or a register. In pre-modify addressing, the DAG adds an offset

ADSP-2136x SHARC Processor Programming Reference 4-11

Data Address Generators

(modifier), which is either an M register or an immediate value, to an I reg-
ister and outputs the resulting address. Pre-modify addressing does not
change or update the I register.

In post-modify addressing, the DAG outputs the I register value
unchanged, then adds an M register or immediate value, updating the I
register value. Figure 4-3 compares pre- and post-modify addressing.

The difference between pre-modify and post-modify instructions in the
processor’s assembly syntax is the position of the index and modifier in the
instruction. If the I register comes before the modifier, the instruction is a
post-modify operation. If the modifier comes before the I register, the
instruction is a pre-modify without update operation. The following
instruction accesses the program memory location indicated by the value
in I15 and writes the value I15 + M12 to the I15 register:

R6 = PM(I15,M12); /* Post-modify addressing with update */

Figure 4-3. Pre-Modify and Post-Modify Operations

I

M

+

OUTPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(MX, IX)
DM(MX, IX)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(IX, MX)
DM(IX, MX)

DAG Operations

4-12 ADSP-2136x SHARC Processor Programming Reference

By comparison, the following instruction accesses the program memory
location indicated by the value I15 + M12 and does not change the
value in I15:

R6 = PM(M12,I15); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same DAG
(DAG1 or DAG2). For a list of I and M registers and their related DAGs,
see Figure 4-2 on page 4-7.

Instructions can also use a number (immediate value), instead of an M reg-
ister, as the modifier. The size of an immediate value that can modify an I
register depends on the instruction type. For all single data access opera-
tions, modify immediate values can be up to 32 bits wide. Instructions
that combine DAG addressing with computations limit the size of the
modify immediate value. In these instructions (multifunction computa-
tions), the modify immediate values can be up to 6 bits wide. The
following example instruction accepts up to 32-bit modifiers:

R1 = DM(0x40000000,I1); /* DM address = I1 + 0x4000 0000 */

The following example instruction accepts up to 6-bit modifiers:

F6 = F1 + F2,PM(I8,0x0B) = ASTAT; /* PM address = I8,

 I8 = I8 + 0x0B */

Pre-modify addressing operations must not change the memory
space of the address.

Data Addressing Stalls
The instruction sequence stalls for two cycles if a read-after-write hazard is
detected on a DAG register. For example, the following sequence auto-
matically generates a two cycle stall.

I0 = R0;

DM(I0,M0) <-> R1;

ADSP-2136x SHARC Processor Programming Reference 4-13

Data Address Generators

If the second instruction is any instruction unrelated to the first instruc-
tion, only one cycle stall is inserted.

I0 = R0;

R1 = 0X5; /*Any unrelated instruction */

DM (I0,M0) = R1; /*Stalls for one cycle */

DAG conditional addressing can also generate stalls. These stalls are intro-
duced when the following sequence of instructions is executed. The first is
a compute instruction that modifies the ASTATx, ASTATy, or FLAGS regis-
ters. The second is a conditional post-modify address generation, and the
third is either an address generation operation using the same index regis-
ter or a read of that index register.

In this sequence, the pipeline is stalled for two cycles.

R2 = R3 – R4; /* Compute setting flags */

IF EQ DM(I1,M1)<-> R1; /* conditional post-modify addressing */

DM(I1,M2) <-> R2; /* address generation using the same I

 register, stalls for two cycles */

When the conditional post-modify instruction is either preceded or fol-
lowed by instructions other than those involving the address generation
using the same I register, the last instruction stalls for one cycle. When the
conditional post-modify instruction is either preceded or followed by two
or more such unrelated instructions, the pipeline does not stall.

Addressing Circular Buffers
The DAGs support addressing circular buffers. This is defined as address-
ing a range of addresses which contain data that the DAG steps through
repeatedly, wrapping around to repeat stepping through the range of
addresses in a circular pattern. To address a circular buffer, the DAG steps
the index pointer (I register) through the buffer, post-modifying and
updating the index on each access with a positive or negative modify value
(M register or immediate value). If the index pointer falls outside the

DAG Operations

4-14 ADSP-2136x SHARC Processor Programming Reference

buffer, the DAG subtracts or adds the buffer length to the index value,
wrapping the index pointer back within the start and end boundaries of
the buffer. The DAG’s support for circular buffer addressing appears in
Figure 4-1 on page 4-3, and an example of circular buffer addressing
appears in Figure 4-4 and Figure 4-5.

The starting address that the DAG wraps around is called the buffer’s base
address (B register). There are no restrictions on the value of the base
address for a circular buffer.

Circular buffering may only use post-modify addressing. The
DAG’s architecture, as shown in Figure 4-1 on page 4-3, cannot
support pre-modify addressing for circular buffering because circu-
lar buffering requires that the index be updated on each access.

It is important to note that the DAGs do not detect memory map over-
flow or underflow. If the address post-modify produces I + M > 0xFFFF
FFFF or I – M < 0, circular buffering may not function correctly. Also, the
length of a circular buffer should not let the buffer straddle the top of the
memory map. For more information on the processor’s memory map, see
“ADSP-2136x Memory Maps” on page 5-12.

As shown in Figure 4-4, programs use the following steps to set up a circu-
lar buffer:

1. Enable circular buffering (BIT SET MODE1 CBUFEN;). This operation
is only needed once in a program.

2. Load the buffer’s base address into the B register. This operation
automatically loads the corresponding I register.

3. Load the buffer’s length into the corresponding L register. For
example, L0 corresponds to B0.

ADSP-2136x SHARC Processor Programming Reference 4-15

Data Address Generators

4. Load the modify value (step size) into an M register in the corre-
sponding DAG. For example, M0 through M7 correspond to B0.
Alternatively, the program can use an immediate value for the
modifier.

Figure 4-5 shows a circular buffer with a similar syntax as in Figure 4-4,
but with a negative modifier.

After circular buffering is set up, the DAGs use the modulus logic in
Figure 4-1 on page 4-3 to process circular buffer addressing.

Figure 4-4. Circular Data Buffers With Positive Modifier

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
NOTE THAT "0" ABOVE IS ADDRESS DM(0X80500). THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

THE FOLLOWING SYNTAX SETS UP AND ACCESSES A CIRCULAR BUFFER WITH:
LENGTH = 11
BASE ADDRESS = 0X80500
MODIFIER = 4

BIT SET MODE1 CBUFEN; /* ENABLES CIRCULAR BUFFER ADDRESSING JUST ONCE IN A PROGRAM */
B0 = 0X80500; /* LOADS B0 AND L0 REGISTERS WITH BASE ADDRESS */
L0 = 11; /* LOADS L0 REGISTER WITH LENGTH OF BUFFER */
M1 = 4; /* LOADS M1 WITH MODIFIER OR STEP SIZE */
LCNTR = 11, DO MY_CIR_BUFFER UNTIL LCE; /* SETS UP A LOOP CONTAINING BUFFER ACCESSES */
R0 = DM(I0,M1); /* AN ACCESS WITHIN THE BUFFER USES POST MODIFY ADDRESSING */

... /* OTHER INSTRUCTIONS IN THE MY_CIR_BUFFER LOOP */
MY_CIR_BUFFER: NOP; /* END OF MY_CIR_BUFFER LOOP */

DAG Operations

4-16 ADSP-2136x SHARC Processor Programming Reference

On the ADSP-2136x processor, programs enable circular buffering by set-
ting the CBUFEN bit in the MODE1 register. This bit has a corresponding
mask bit in the MMASK register. Setting the corresponding MMASK bit causes
the CBUFEN bit to be cleared following a push status instruction (PUSH STS)
or the execution of an external interrupt, timer interrupt, or vectored
interrupt. This feature allows programs to disable circular buffering while
in an interrupt service routine that does not use circular buffering. By dis-
abling circular buffering, the routine does not need to save and restore the
DAG’s B and L registers.

Clearing the CBUFEN bit disables circular buffering for all data load and
store operations. The DAGs perform normal post-modify load and store
accesses, ignoring the B and L register values. Note that a write to a B regis-
ter modifies the corresponding I register, independent of the state of the
CBUFEN bit. The MODIFY instruction executes independent of the state of

Figure 4-5. Circular Data Buffers With Negative Modifier

0

1

2

3

4

5

6

7

8

9

1

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

3

2

6

5

4

9

8

7

0

1

2

3

4

5

6

7

8

9

10

11

10

ADSP-2136x SHARC Processor Programming Reference 4-17

Data Address Generators

the CBUFEN bit. The MODIFY instruction always performs circular buffer
modify of the index registers if the corresponding B and L registers are
configured, independent of the state of the CBUFEN bit.

When circular buffering is enabled, on the first post-modify access to the
buffer, the DAG outputs the I register value on the address bus then mod-
ifies the address by adding the modify value. If the updated index value is
within limits of the buffer, the DAG writes the value to the I register. If
the updated value is outside the buffer limits, the DAG subtracts (for pos-
itive M) or adds (for negative M) the L register value before writing the
updated index value to the I register. In equation form, these post-modify
and wraparound operations work as follows.

• If M is positive:

Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

Inew = Iold + M – L if Iold + M ≥ buffer base + length

• If M is negative:

Inew = Iold + M if Iold + M ≥ buffer base (start of buffer)

Inew = Iold + M + L if Iold + M < buffer base (start of buffer)

The DAGs use all four types of DAG registers for addressing circular buff-
ers. These registers operate as follows for circular buffering.

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify value (positive or
negative) that the DAG adds to the I register at the end of each
memory access. The M register can be any M register in the same
DAG as the I register and does not have to have the same number.
The modify value can also be an immediate value instead of an M

DAG Operations

4-18 ADSP-2136x SHARC Processor Programming Reference

register. The size of the modify value, whether from an M register or
immediate, must be less than the length (L register) of the circular
buffer.

• The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through.
The L register must be positive and cannot have a value greater
than 231 – 1. If an L register’s value is zero, its circular buffer oper-
ation is disabled.

• The DAG compares the base (B) register, or the B register plus the L
register, to the modified I value after each access. When the B regis-
ter is loaded, the corresponding I register is simultaneously loaded
with the same value. When I is loaded, B is not changed. Programs
can read the B and I registers independently.

There is one set of registers (I7 and I15) in each DAG that can generate an
interrupt on circular buffer overflow (address wraparound). For more
information, see “Using DAG Status” on page 4-9.

When a program needs to use I7 or I15 without circular buffering and the
processor has the circular buffer overflow interrupts unmasked, the pro-
gram should disable the generation of these interrupts by setting the
B7/B15 and L7/L15 registers to values that prevent the interrupts from
occurring. If I7 were accessing the address range 0x1000 – 0x2000, the
program could set B7 = 0x0000 and L7 = 0xFFFF. Because the processor
generates the circular buffer interrupt based on the wraparound equations
on page 4-17, setting the L register to zero does not necessarily achieve the
desired results. If the program is using either of the circular buffer over-
flow interrupts, it should avoid using the corresponding I register(s) (I7 or
I15) where interrupt branching is not needed.

ADSP-2136x SHARC Processor Programming Reference 4-19

Data Address Generators

When working with circular buffers, there are two special situations to be
aware of:

1. In the case of circular buffer overflow interrupts, if CBUFEN = 1 and
register L7 = 0 (or L15 = 0), then the CB7I (or CB15I) interrupt
occurs at every change of I7 (or I15), after the index register (I7 or
I15) crosses the base register (B7 or B15) value. This behavior is
independent of the context of the DAG registers, both primary and
alternate.

2. When a long word access, SIMD access, or normal word access
with LW option crosses the end of the circular buffer, the processor
completes the access before responding to the end of buffer
condition.

Modifying DAG Registers
The DAGs support two operations that modify an address value in an
index register without outputting an address. These two operations,
address bit-reversal and address modify, are useful for bit-reverse address-
ing and maintaining pointers.

The MODIFY instruction modifies addresses in any DAG index register
(I0-I15) without accessing memory.

If the I register’s corresponding B and L registers are set up for cir-
cular buffering, a MODIFY instruction performs the specified buffer
wraparound (if needed).

The syntax for MODIFY is similar to post-modify addressing (index, then
modifier). The MODIFY instruction accepts either a 32-bit immediate value
or an M register as the modifier. The following example adds 4 to I1 and
updates I1 with the new value:

MODIFY(I1,4);

DAGs, Registers, and Memory

4-20 ADSP-2136x SHARC Processor Programming Reference

The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (I0-I15) without accessing memory. This instruction is
independent of the bit-reverse mode. The BITREV instruction adds a 32-bit
immediate value to a DAG index register, bit-reverses the result, and
writes the result back to the same index register. The following example
adds 4 to I1, bit-reverses the result, and updates I1 with the new value:

BITREV(I1,4);

Addressing in SISD and SIMD Modes
Single-instruction, multiple-data (SIMD) mode (PEYEN bit=1) does not
change the addressing operations in the DAGs, but it does change the
amount of data that moves during each access. The DAGs put the same
addresses on the address buses in SIMD and single-instruction single-data
(SISD) modes. In SIMD mode, the processor’s memory and processing
elements get data from the named (explicit) locations in the instruction
syntax as well as complementary (implicit) locations. For more informa-
tion on data moves between registers, see “SIMD (Computational)
Operations” on page 2-49.

DAGs, Registers, and Memory
DAG registers are part of the universal register (Ureg) set. Programs may
load the DAG registers from memory, from another universal register, or
with an immediate value. Programs may store DAG registers’ contents to
memory or to another universal register.

The DAG’s registers support the bidirectional register-to-register transfers
that are described in “SIMD (Computational) Operations” on page 2-49.
When the DAG register is a source of the transfer, the destination can be a
register file data register. This transfer results in the contents of the single
source register being duplicated in complementary data registers in each
processing element.

ADSP-2136x SHARC Processor Programming Reference 4-21

Data Address Generators

When the processor is in SIMD mode, if the DAG register is a destination
of a transfer from a register file data register source, the processor executes
the explicit move only on the condition in PEx becoming true, whereas
the implicit move is not performed. This is also true when both the source
and the destination is a DAG register.

Programs should use a conditional operation to select either one process-
ing element or neither as the source. Having both processing elements
contribute a source value results in the PEx element's write having prece-
dence over the PEy element’s write.

DAG Register-to-Bus Alignment
There are three word alignment types for DAG registers and PM or DM
data buses: normal word, extended-precision normal word, and long
word.

The DAGs align normal word (32-bit) addressed transfers to the low order
bits of the buses. These transfers between memory and 32-bit DAG1 or
DAG2 registers use the 64-bit DM and PM data buses. Figure 4-6 illus-
trates these transfers.

Figure 4-6. Normal Word (32-Bit) DAG Register Memory Transfers

DAG1 OR DAG2 REGISTERS

03163
0X0000 0000

DM OR PM DATA BUS

031

DAGs, Registers, and Memory

4-22 ADSP-2136x SHARC Processor Programming Reference

The DAGs align extended-precision normal word (40-bit) addressed
transfers or register-to-register transfers to bits 39-8 of the buses. These
transfers between a 40-bit data register and 32-bit DAG1 or DAG2 regis-
ters use the 64-bit DM and PM data buses. Figure 4-7 illustrates these
transfers.

Long word (64-bit) addressed transfers between memory and 32-bit
DAG1 or DAG2 registers target double DAG registers and use the 64-bit
DM and PM data buses. Figure 4-8 illustrates how the bus works in these
transfers.

If the long word transfer specifies an even numbered DAG register (I0 or
I2), then the even numbered register value transfers on the lower half of
the 64-bit bus, and the even numbered register + 1 value transfers on the
upper half (bits 63-32) of the bus.

If the long word transfer specifies an odd numbered DAG register (I1 or
B3), the odd numbered register value transfers on the lower half of the
64-bit bus, and the odd numbered register – 1 value (I0 or B2 in this
example) transfers on the upper half (bits 63-32) of the bus.

In both the even and odd numbered cases, the explicitly specified DAG
register sources or sinks bits 31–0 of the long word addressed memory.

Figure 4-7. DAG Register-to-Data Register Transfers

DAG1 OR DAG2 REGISTERS

031

04063
0X00 00 00

DM OR PM DATA BUS

0X00
839 7

ADSP-2136x SHARC Processor Programming Reference 4-23

Data Address Generators

For implicit moves and long word accesses that use the PX registers such as
I0 = PX;, which moves PX1 to I0, only the contents of the PX1 register are
written into I0. However, in the code example PX = I0; PX1 and Px2 are
both loaded with I0.

DAG Register Transfer Restrictions
The two types of transfer restrictions are hold-off conditions and illegal
conditions that the processor does not detect.

Certain sequences of instructions cause incorrect results on the processor
and are flagged as errors by the processor assembler software. The follow-
ing types of instructions can execute on the processor, but cause incorrect
results.

• An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without an update of the
index register. The instruction writes the wrong data to memory or
updates the wrong index register.

Do not try these: DM(M2,I1) = I0; or DM(I1,M2) = I0;
These example instructions do not work because I0 and I1 are both
DAG1 registers.

Figure 4-8. Long Word DAG Register-to-Data Register Transfers

EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS

031

31 063

DM OR PM DATA BUS

IMPLICIT (NAMED + OR - 1)
DAG1 OR DAG2 REGISTERS

031

DAG Instruction Summary

4-24 ADSP-2136x SHARC Processor Programming Reference

• An instruction that loads a DAG register from memory using indi-
rect addressing from the same DAG, with an update of the index
register. The instruction either loads the DAG register or updates
the index register, but not both.

Do not try this: L2 = DM(I1,M0);
This example instruction does not work because L2 and I1 are both
DAG1 registers.

DAG Instruction Summary
Table 4-2, Table 4-3, Table 4-4, Table 4-5, Table 4-6, Table 4-7,
Table 4-8, and Table 4-9 list the DAG instructions. For more information
on assembly language syntax, see “Instruction Set” in Chapter 8, Instruc-
tion Set, and “Computations Reference” in Chapter 9, Computations
Reference. In these tables, note the meaning of the following symbols:

• I15–8 indicates a DAG2 index register: I15, I14, I13, I12, I11, I10,
I9, or I8, and I7–0 indicates a DAG1 index register I7, I6, I5, I4,
I3, I2, I1, or I0.

• M15–8 indicates a DAG2 modify register: M15, M14, M13, M12, M11,
M10, M9, or M8, and M7–0 indicates a DAG1 modify register M7, M6,
M5, M4, M3, M2, M1, or M0.

• Ureg indicates any universal register; for a list of the processor’s
universal registers, see Table B-1 on page B-2.

• Dreg indicates any data register; for a list of the processor’s data
registers, see the Data Register File registers listed in Table B-1 on
page B-2.

• Data32 indicates any 32-bit value, and Data6 indicates any 6-bit
value.

ADSP-2136x SHARC Processor Programming Reference 4-25

Data Address Generators

Table 4-2. Post-Modify Addressing, Modified by M Register and
Updating I Register

DM(I7–0,M7–0)=Ureg (LW); {DAG1}

PM(I15–8,M15–8)=Ureg (LW); {DAG2}

Ureg=DM(I7–0,M7–0) (LW); {DAG1}

Ureg=PM(I15–8,M15–8) (LW); {DAG2}

DM(I7–0,M7–0)=Data32; {DAG1}

PM(I15–8,M15–8)=Data32; {DAG2}

Table 4-3. Post-Modify Addressing, Modified by 6-Bit Data and
Updating I Register

DM(I7–0,Data6)=Dreg; {DAG1}

PM(I15–8,Data6)=Dreg; {DAG2}

Dreg=DM(I7–0,Data6); {DAG1}

Dreg=PM(I15–8,Data6); {DAG2}

Table 4-4. Pre-Modify Addressing, Modified by M Register
(No I Register Update)

DM(M7–0,I7–0)=Ureg (LW); {DAG1}

PM(M15–8,I15–8)=Ureg (LW); {DAG2}

Ureg=DM(M7–0,I7–0) (LW); {DAG1}

Ureg=PM(M15–8,I15–8) (LW); {DAG2}

DAG Instruction Summary

4-26 ADSP-2136x SHARC Processor Programming Reference

Table 4-5. Pre-Modify Addressing, Modified by 6-Bit Data
(No I Register Update)

DM(Data6,I7–0)=Dreg; {DAG1}

PM(Data6,I15–8)=Dreg; {DAG2}

Dreg=DM(Data6,I7–0); {DAG1}

Dreg=PM(Data6,I15–8); {DAG2}

Table 4-6. Pre-Modify Addressing, Modified by 32-Bit Data
(No I Register Update)

Ureg=DM(Data32,I7–0) (LW); {DAG1}

Ureg=PM(Data32,I15–8) (LW); {DAG2}

DM(Data32,I7–0)=Ureg (LW); {DAG1}

PM(Data32,I15–8)=Ureg (LW); {DAG2}

Table 4-7. Update (Modify) I Register, Modified by M Register

Modify(I7–0,M7–0); {DAG1}

Modify(I15–8,M15–8); {DAG2}

Table 4-8. Update (Modify) I Register, Modified by 32-Bit Data

Modify(I7–0,Data32); {DAG1}

Modify(I15–8,Data32); {DAG2}

Table 4-9. Bit-Reverse and Update I Register, Modified By 32-Bit Data

Bitrev(I7–0,Data32); {DAG1}

Bitrev(I15–8,Data32); {DAG2}

ADSP-2136x SHARC Processor Programming Reference 5-1

5 MEMORY

The ADSP-2136x processors contain four blocks of single-ported internal
memory. In most programs this memory is available for single cycle,
simultaneous, independent accesses by the core processor and I/O proces-
sor. The single-ported memory, in combination with three separate
on-chip buses, allows two data transfers from the core and one transfer
from the I/O processor in a single cycle, provided the access is from three
different blocks of the memory. Using the I/O bus, the I/O processor pro-
vides data transfers between internal memory and the processor’s
communication ports.

As described in the Introduction, the ADSP-2136x processors are com-
prised of two groups, the ADSP-21362/3/4/5/6 and the ADSP-21367/8/9
processors. The differences in these group’s memory is the
ADSP-21367/8/9 processors contain an external port which is made up of
an asynchronous memory interface, an SDRAM controller and, in the case
of the ADSP-21368, a shared memory interface. Also, the processor
groups have different amounts of ROM/RAM memory.

This chapter describes the processor’s internal and external memory mem-
ory and how to use it. For detailed information on the ADSP-21367/8/9
processors external port (and other peripherals), see the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21367/8/9 Processors.
For information on connecting and timing accesses to external memory
devices that relate to the ADSP-21362/3/4/5/6 processors, see the
ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21362/3/4/5/6 Processors.

5-2 ADSP-2136x SHARC Processor Programming Reference

In this chapter both groups are referred to as ADSP-2136x proces-
sors. Where differences exist, they are noted explicitly.

The processor memory is organized as four blocks—block 0, block 1,
block 2 and block 3, containing up to 3M bits of internal RAM and 6M
bits of internal ROM. The memory on the ADSP-2136x processor has the
following additional features.

• Each block can be configured for different combinations of code
and data storage.

• Each block consists of four columns and each column is 16 bits
wide.

• Each block maps to separate regions in memory address space and
can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words.

• Each block also has its own two-deep self clearing shadow write
buffers with automatic hit detection and data forwarding logic for
read access.

• The processor features a 16-bit floating-point storage format that
effectively doubles the amount of data that may be stored on-chip.
A single instruction converts the format from 32-bit floating-point
to 16-bit floating-point.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,
for transfers, the second block stores instructions and data using the PM
bus and a third and fourth block stores data using the I/O bus. Using the
DM and PM buses in this way assures single-cycle execution with two data
transfers. In this case, the instruction must be available in the cache.

ADSP-2136x SHARC Processor Programming Reference 5-3

Memory

Internal Memory
The ADSP-2136x processors contain up to 3M bits of internal RAM and
up to 6M bits of internal ROM. For information about the maximum
number of data or instruction words that can fit into internal memory, see
the processor specific data sheet. The current list of titles is located at
“Related Documents” on page xxix.

Processor Memory Architecture
Most microprocessors use a single address and a single-data bus for mem-
ory accesses. This type of memory architecture is referred to as the Von
Neumann architecture. Because processors require greater data through-
put than the Von Neumann architecture provides, many processors use
memory architectures that have separate data and address buses for pro-
gram and data storage. These two sets of buses let the processor retrieve a
data word and an instruction simultaneously. This type of memory archi-
tecture is called Harvard architecture.

SHARC processors go a step further by using a Super Harvard architec-
ture. This four bus architecture has two address buses and two data buses,
but provides a single, unified address space for program and data storage.
While the data memory (DM) bus only carries data, the program memory
(PM) bus handles instructions and data, allowing dual-data accesses.

Processor core and I/O processor accesses to internal memory are com-
pletely independent and transparent to one another. Each block of
memory can be accessed by the processor core and I/O processor in every
cycle provided the access is to different block of the memory.

A memory access conflict can occur when the processor attempts two
accesses to the same internal memory block in the same cycle. When this
conflict, known as a block conflict occurs, the memory interface logic
resolves it according the following rules. The instruction that causes this
conflict may take two or three core clock cycles to complete execution.

Internal Memory

5-4 ADSP-2136x SHARC Processor Programming Reference

1. Between DM and PM accesses, conflict is always resolved in favor
of DM, with the PM access occurring in the second cycle.

2. Between the core (DM/PM) and I/O accesses, the conflict is
resolved in favor of I/O. Note that since the I/O bus runs at half
the core clock frequency (CCLK), I/O accesses are requested at a
maximum rate of once in two core clock cycles. This provides a fair
sharing of memory access to the core and I/O buses.

During a single-cycle, dual-data access, the processor core uses the inde-
pendent PM and DM buses to simultaneously access data from two
memory blocks. Though dual-data accesses provide greater data through-
put, it is important to note some limitations on how programs may use
them. The limitations on single cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks.

If the core accesses two words from the same memory block over
the same bus in a single instruction, an extra cycle is needed.

• The data access execution may not conflict with an instruction
fetch operation. The PM data bus tries to fetch an instruction in
every cycle. If a data fetch is also attempted over the PM bus, an
extra cycle may be required depending on the cache.

If the cache contains the conflicting instruction, the data access
completes in a single cycle and the sequencer uses the cached
instruction. If the conflicting instruction is not in the cache, an
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache”
on page 3-8.

For more information on how the buses access memory blocks, see “Inter-
nal Memory” on page 5-3.

ADSP-2136x SHARC Processor Programming Reference 5-5

Memory

Buses
As shown in Figure 5-1, the processor has three sets of internal buses con-
nected to its single-ported memory, the program memory (PM), data
memory (DM), and I/O processor (IOP) buses. The IOP bus is designed
to run only at half the core clock frequency. The three buses share the sin-
gle port on each of the four memory blocks. Memory accesses from the
processor’s core (computational units, data address generators, or program
sequencer) use the PM or DM buses, while the I/O processor uses the IOP
bus for memory accesses. The I/O processor can access external memory
devices. For more information about the external memory and I/O capa-
bilities of the processor, see the ADSP-2136x SHARC Processor Hardware
Reference for the ADSP-21363/4/5/6 Processors or the ADSP-2136x SHARC
Processor Hardware Reference for the ADSP-21367/8/9 Processors.

Internal Address and Data Buses
Figure 5-1 shows that the DM, PM and IOP buses have independent
access to internal memory.

Accesses to IOP spaces should not use type 1 (dual access) or LW
instructions.

Addresses for the PM and DM buses come from the processor’s program
sequencer and data address generators (DAGs). The program sequencer
generates 24-bit program memory addresses while DAGs supply 32-bit
addresses for locations throughout the processor’s memory spaces. The
DAGs supply addresses for data reads and writes on both the PM and DM
address buses, while the program sequencer uses only the PM address bus
for sequencing execution.

Each DAG is associated with a particular data bus. DAG1 supplies
addresses over the DM bus and DAG2 supplies addresses over the PM
bus. For more information on address generation, see “Program
Sequencer” on page 3-1 or “Data Address Generators” on page 4-1.

Buses

5-6 ADSP-2136x SHARC Processor Programming Reference

Figure 5-1. Memory and Internal Buses Block Diagram

ADDRESS

DATA

64

ADDRESS DATA ADDRESS

DATA

PARALLEL/EXTERNAL
PORT

I/O PROCESSOR

24

32

32

64

AD

EXTERNAL
(SYSTEM) MEMORY

BUS EXCHANGE REGISTER (Px)

DM ADDRESS BUS

DM DATA BUS

I/O ADDRESS BUS

I/O DATA BUS

PM ADDRESS BUS

PM DATA BUS

64

ADDRESS DATA

24
32

ADDRESS

DATA

BLOCK 0

BLOCK 1

ADDRESS

DATA

BLOCK 2

ADDRESS

DATA
BLOCK 3

BOOT
ROM OR FLASH

16

ADSP-2136x SHARC Processor Programming Reference 5-7

Memory

Because the processor’s internal memory is arranged in four 16-bit wide
by 64K columns, memory is addressable in widths that are multiples of
columns up to 64 bits:

1 column = 16-bit words

2 columns = 32-bit words

3 columns = 48-or 40-bit words

4 columns = 64-bit words

For more information on how the processor works with memory words,
see “Memory Organization and Word Size” on page 5-19.

The PM and DM data buses are 64 bits wide. Both data buses can handle
long word (64-bit), normal word (32-bit), Extended-precision normal
word (40-bit), and short word (16-bit) data, but only the PM data bus
carries instruction words (48-bit).

Internal Data Bus Exchange
The data buses allow programs to transfer the contents of any register in
the processor to any other register or to any internal memory location in a
single cycle. As shown in Figure 5-1, the bus exchange (PX) register per-
mits data to flow between the PM and DM data buses. The PX register can
work as one 64-bit register or as two 32-bit registers (PX1 and PX2). The
alignment of PX1 and PX2 within PX appears in Figure 5-2.

The PX1, PX2, and the combined PX registers are universal registers that are
accessible for register-to-register or memory-to-register transfers.

The PX register-to-register transfers using data registers are either 40-bit
transfers for the combined PX or 32-bit transfers for PX1 or PX2. Figure 5-3
shows the bit alignment and gives an example of instructions for regis-
ter-to-register transfers.

Buses

5-8 ADSP-2136x SHARC Processor Programming Reference

Figure 5-3 shows that during a transfer between PX1 or PX2 and a data reg-
ister (Dreg), the bus transfers the upper 32 bits of the register file and
zero-fills the eight least significant bits (LSBs).

During a transfer between the combined PX register and a register file, the
bus transfers the upper 40 bits of PX and zero-fills the lower 24 bits.

Figure 5-2. PM Bus Exchange (PX, PX1, and PX2) Registers

Figure 5-3. PX, PX1, and PX2 Register-to-Register Transfers

03263 31

0031 31

0x98001

Instruction Examples

PX = DM(0x98000)(LW);

PX = DM(0x4C000);

PX1PX2

03263 31

0x4C000

0031 31

PX

0x97000

Register File Transfer

PX1 or PX2

39 7 0

0x0

32 bits

Register File Transfer

39 0

0x0

02363

8

32 bits

31 024

40 bits

Combined PX

PX1PX2

Instruction Examples
R3 = PX; R3 = PX1; or R3 = PX2;

40 bits

R3 R3

PX

ADSP-2136x SHARC Processor Programming Reference 5-9

Memory

The PX register-to-internal memory transfers over the DM or PM data bus
are either 48-bit transfers for the combined PX or 32-bit transfers (on bits
31-0 of the bus) for PX1 or PX2. Figure 5-4 shows these transfers.

Figure 5-4 shows that during a transfer between PX1 or PX2 and internal
memory, the bus transfers the lower 32 bits of the register.

During a transfer between the combined PX register and internal memory,
the bus transfers the upper 48 bits of PX and zero-fills the lower 16 bits.

The status of the memory block’s internal memory data width
(IMDWx bits in the system control register) setting does not effect
this default transfer size for PX to internal memory.

All transfers between the PX register (or any other internal register or
memory) and any I/O processor register are 32-bit transfers (least signifi-
cant 32 bits of PX).

Figure 5-4. PX, PX1, PX2 Register-to-Memory Transfers on DM or PM
Data Bus

Instruction Examples

PX = DM (0xB0000); PM(I7,M7) = PX1;

31

PX1 or PX2

32 bits

063

0x0 32 bits

DM or PM Data Bus Transfer

31 0

15

 PX2

DM and PM Data Bus Transfer (not LW)

03163

48 bits

16

15 03163 16

48 bits 0x0

0x0

 PX1

Combined PX

Buses

5-10 ADSP-2136x SHARC Processor Programming Reference

All transfers between the PX register and data registers (R0–R15 or S0–S15)
are 40-bit transfers. The most significant 40 bits are transferred as shown
in Figure 5-3.

Figure 5-5 shows the transfer size between PX and internal memory over
the PM or DM data bus when using the long word (LW) option.

The LW notation in Figure 5-5 shows an important feature of PX regis-
ter-to-internal memory transfers over the PM or DM data bus for the
combined PX register. The PX register transfers to memory are 48-bit
(three column) transfers on bits 63-16 of the PM or DM data bus, unless a
long word transfer is used, or the transfer is forced to be 64-bit (four col-
umn) with the LW (long word) mnemonic. Also note that:

• The LW mnemonic affects data accesses that use the NW (normal
word) addresses irrespective of the settings of the PEYEN (processor
element Y enable) and IMDWx (internal memory data width) bits.

Figure 5-5. PX Register-to-Memory Transfers on PM Data Bus (LW)

Combined PX

DM (LW) or PM (LW)

03163

64 bits

03163

64 bits

Data Bus Transfer

Instruction Example

PX = PM (0xB8000)(LW);

ADSP-2136x SHARC Processor Programming Reference 5-11

Memory

• If a register without a peer such as the PC (program counter) or
LCNTR (loop counter) registers, or immediate data is a source for a
transfer to a long word memory location, the 32 bit source data is
replicated within the long word.

This is shown in the example below where the long word location
0x4F800 is written with the 64-bit data abbaabba_abbaabba. This
is the case for all registers without peers.

I0 = 0X4F800;

M0 = 0X1;
DM(I0,M0) = 0xabbaabba;

• Long word accesses with USTATx registers execute as shown below.

USTAT1 = DM (LW address); /* Loads only USTAT1 in SISD

 mode */

DM (LW address) = USTAT1; /* Stores both USTAT1 and

 USTAT2 */

There is no implicit move when the combined PX register is used in SIMD
mode. For example, in SIMD mode, the following moves occur:

PX1 = R0; /* R0 32-bit explicit move to PX1,

 and S0 32-bit implicit move to PX2 */

PX = R0; /* R0 40-bit explicit move to PX,

 but no implicit move for S0 */

However, the following exceptions should be noted:

• Transfers between USTATx and PX registers as in the following exam-
ple and Figure 5-6. Note that all user status registers behave in this
manner.

PX = USTAT1; /* loads PX1 with USTAT1 and PX2 with

 USTAT2 */

USTAT1 = PX /* loads only PX1 to USTAT1 */

ADSP-2136x Memory Maps

5-12 ADSP-2136x SHARC Processor Programming Reference

• Transfers between DAG and other system registers and the PX reg-
ister as shown in the following example.

I0 = PX /* Moves PX1 to I0 */

PX = I0 /* Loads both PX1 and PX2 with I0 */

LCNTR = PX /* Loads LCNTR with PX1 */

PX = PC /* Loads both PX1 and PX2 with PC */

ADSP-2136x Memory Maps
An example of the ADSP-2136x processor’s memory map appears in
Table 5-1 and shows three memory spaces: internal memory space, exter-
nal memory space, and IOP (I/O processor) space. These spaces have these
definitions:

• Internal memory space. This space ranges from address
0x0004 0000 through 0x0020 000. Internal memory space refers
to the processor’s on-chip RAM, on-chip ROM, memory-mapped
registers and reserved memory space.

• External memory. For information on external memory space
please refer to the processor specific hardware reference.

Figure 5-6. Transfers Between USTATx and PX Registers

USTAT1

031

32 bits

031

PX1

Instruction Example

PX = USTAT1;

USTAT2

031

031

PX2

32 bits

32 bits 32 bits

ADSP-2136x SHARC Processor Programming Reference 5-13

Memory

• IOP Space. This space ranges from address
0x0000 0000 through 0x3FFFF. The I/O processor’s mem-
ory-mapped registers control the system configuration of the
processor and I/O operations. For information about the I/O pro-
cessor, see the ADSP-2136x SHARC Processor Hardware Reference
for the ADSP-21362/3/4/5/6 Processors or the ADSP-2136x SHARC
Processor Hardware Reference for the ADSP-21367/8/9 Processors.
These registers occupy consecutive 32-bit locations in this region.

If a program uses long word addressing (forced with the LW mne-
monic) to access this region, the access is only to the addressed
32-bit register, rather than the two adjacent I/O processor registers.
The register contents are transferred on bits 31–0 of the data bus.

Internal Memory
The ADSP-2136x processors’s internal memory space is divided into four
blocks—block 0, block 1, block 2 and block 3. RAM and ROM memory
varies by processor model and Table 5-1 is just one example. For specific
memory organization information, see the processor specific data sheet.

Each block is physically comprised of four 16-bit columns. Wrapping, as
shown in Figure 5-8 on page 5-21, is a method where memory can effi-
ciently store different combinations of 16-bit, 32-bit, 48-bit or 64-bit
wide words. The width of the data word fetched from memory is depen-
dant upon the address range used. The same physical location in memory
can be accessed using three different addresses.

For example, the long word address 0x4C000 corresponds to the same
locations as normal word address 0x98000 and 0x98001. This also corre-
sponds to the same locations as short word addresses 0x0013 0000,
0x0013 0001, 0x0013 0002 and 0x0013 0003. There are gaps in the
memory map when using normal word addressing for 48-bit or 40-bit
accesses. These gaps of missing addresses stem from the arrangement of
this 3-column data in the memory.

ADSP-2136x Memory Maps

5-14 ADSP-2136x SHARC Processor Programming Reference

Table 5-1. Example Internal Memory Space (ADSP-21367)

IOP Registers 0x0000 0000–0x0003 FFFF

Long Word (64 bits)

Extended-Precision
Normal or Instruction
Word (48 bits)

Normal Word
(32 bits) Short Word (16 bits)

BLOCK 0 ROM
0x0004 0000–
0x0004 BFFF

BLOCK 0 ROM
0x0008 0000–
0x0008 FFFF

BLOCK 0 ROM
0x0008 0000–
0x0009 7FFF

BLOCK 0 ROM
0x0010 0000–
0x0012 FFFF

Reserved
0x0004 F000–
0x0004 FFFF

Reserved
0x0009 4000–
0x0009 FFFF

Reserved
0x0009 E0000–
0x0009 FFFF

Reserved
0x0013 C000–
0x0013 FFFF

BLOCK 0 RAM
0x0004 C000–
0x0004 EFFF

BLOCK 0 RAM
0x0009 0000–
0x0009 3FFF

BLOCK 0 RAM
0x0009 8000–
0x0009 DFFF

BLOCK 0 RAM
0x0013 0000–
0x0013 BFFF

BLOCK 1 ROM
0x0005 0000–
0x0005 BFFF

BLOCK 1 ROM
0x000A 0000–
0x000A FFFF

BLOCK 1 ROM
0x000A 0000–
0x000B 7FFF

BLOCK 1 ROM
0x0014 0000–
0x0016 FFFF

Reserved
0x0005 F000–
0x0005 FFFF

Reserved
 0x000B 4000–
0x000B FFFF

Reserved
0x000B E000–
0x000B FFFF

Reserved
0x0017 C000–
0x0017 FFFF

BLOCK 1 RAM
0x0005 C000–
0x0005 EFFF

BLOCK 1 RAM
0x000B 0000–
0x000B 3FFF

BLOCK 1 RAM
0x000B 8000–
0x000B DFFF

BLOCK 1 RAM
0x0017 0000–
0x0017 BFFF

BLOCK 2 RAM
0x0006 0000–
0x0006 0FFF

BLOCK 2 RAM
0x000C 0000–
0x000C 1554

BLOCK 2 RAM
0x000C 0000–
0x000C 1FFF

BLOCK 2 RAM
0x0018 0000–
0x0018 3FFF

Reserved
0x0006 1000–
0x0006 FFFF

Reserved
0x000C 1555–
0x000D FFFF

Reserved
0x000C 2000–
0x000D FFFF

Reserved
0x0018 4000–
0x001B FFFF

BLOCK 3 RAM
0x0007 0000–
0x0007 0FFF

BLOCK 3 RAM
0x000E 0000–
0x000E 1554

BLOCK 3 RAM
0x000E 0000–
0x000E 1FFF

BLOCK 3 RAM
0x001C 0000–
0x001C 3FFF

Reserved
0x0007 1000–
0x0007 FFFF

Reserved
0x000E 1555–
0x000F FFFF

Reserved
0x000E 2000–
0x000F FFFF

Reserved
0x001C 4000–
0x001F FFFF

ADSP-2136x SHARC Processor Programming Reference 5-15

Memory

Accessing a short word memory address accesses one 16-bit word. Consec-
utive 16-bit short-words are accessed from columns #1, #2, #3, #4, #1 and
so on. Accessing a normal word memory address transfers 32 bits (from
columns 1 and 2 or 3 and 4). Consecutive 32-bit words are accessed from
columns 1 and 2, 3 and 4, 1 and 2 etc. Accessing a long word address
transfers 64 bits (from all four columns). For example, the same 16 bits of
Block-0 are overwritten in each of the following four write instructions
(some, but not all of the short word accesses overwrite more than 16 bits):

Listing 5-1. Overwriting Bits:

#include <def2136x.h>

DM(0x0004C000) = PX; /* long word transfer

 (64 bits/four columns) */

DM(0x00098000) = R0; /* normal word transfer

 (32 bits/two columns) */

DM(0x00130000) = R0; /* short word transfer

 (16 bits/1-column) */

USTAT1 = dm(SYSCTL);

bit set USTAT1 IMDW0; /* set Blk0 access as ext. precision */

dm(SYSCTL) = USTAT1;

DM(0x00090000) = R0; /* normal word transfer

 (40 bits/three columns) */

Normal word address space is also used by the program sequencer to fetch
48-bit instructions. Note that a 48-bit fetch spans three columns that can
lead to a different address range between instruction fetches and data
fetches (Figure 5-7 on page 5-20).

Normal word address space can also optionally be used to fetch 40-bit
data (from three columns) if the IMDWx (internal memory data width) bit
in the SYSCTL register is set. There are four bits in the SYSCTL register,
IMDW0–3 that determine whether access to each block is 32 or 40 bits. For
more information, see “Accessing Memory” on page 5-31.

ADSP-2136x Memory Maps

5-16 ADSP-2136x SHARC Processor Programming Reference

The I/O processor’s memory-mapped registers control the system configu-
ration of the processor and I/O operations. For information about the I/O
processor, see the ADSP-2136x SHARC Processor Hardware Reference for
the ADSP-21363/4/5/6 Processors or the ADSP-2136x SHARC Processor
Hardware Reference for the ADSP-21367/8/9 Processors. These registers
occupy consecutive 32-bit locations in this region.

If a program uses long word addressing (forced with the LW mnemonic) to
access this region, the access is only to the addressed 32-bit register, rather
than the two adjacent I/O processor registers. The register contents are
transferred on bits 31–0 of the data bus.

Shared Memory
The ADSP-21368 processor supports connecting to common shared
external memory with other ADSP-21368 processors to create shared
external bus processor systems. This support includes:

• Distributed, on-chip arbitration for the shared external bus

• Fixed and rotating priority bus arbitration

• Bus time-out logic

• Bus lock

For more information, see “External Port” in the ADSP-2136x SHARC
Processor Hardware Reference for the ADSP-21367/8/9 Processors.

External Memory
In the ADSP-21367/8/9 processors, the external memory interface sup-
ports access to the external memory by direct core accesses and DMA
accesses. The external memory address space for non SDRAM addresses is
shown in Table 5-2. The external memory address space for SDRAM

ADSP-2136x SHARC Processor Programming Reference 5-17

Memory

addresses is shown in Table 5-4. The external memory is divided in to
four banks. Any bank can be programmed as asynchronous memory or
synchronous memory.

External memory address space is supported in normal word
addressing mode only. Extended-precision, short word and long
word addressing modes are not supported. Program execution from
external memory is also not supported.

For more information, see “External Port” in the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21367/8/9
Processors.

External Address Space

The AMI supports 14M words of external memory in bank 1, bank 2, and
bank 3 and 12M words of external memory in bank 0. The maximum
amount of external data is 64M bytes when the external bus width (set
using the BW bits 2–1 in the AMICTL register) is 32 bits on bank 1, bank 2,
or bank 3. When the external bus width is 32 bits or when packing is dis-
abled with other bus widths (PKDIS = 1 and BW = 16-bit or PKDIS = 1 and
BW = 8-bit) then the external physical memory is the same as the lower 24
bits of the internal physical address, ADDR23–0 or ADDR23–0 = internal phys-
ical address 23–0.

Table 5-2. External Memory Address Space for Non SDRAM Addresses

Bank Size in words Address Range

Bank 0 14M 0x0020 0000 – 0x00FF FFFF

Bank 1 16M 0x0400 0000 – 0x04FF FFFF

Bank 2 16M 0x0800 0000 – 0x08FF FFFF

Bank 3 16M 0x0C00 0000 – 0x0CFF FFFF

ADSP-2136x Memory Maps

5-18 ADSP-2136x SHARC Processor Programming Reference

For an external bus width of 16 bits with packing enabled (PKDIS = 0) the
external physical address ADDR23–0 generation is ADDR23–1 = internal phys-
ical address 22–0 where ADDR[0] corresponds to the 1st/2nd 16-bit word.

For an external bus width of 8 bits with packing enabled (PKDIS = 0) the
external physical address ADDR23–0 generation is ADDR23–2 = internal phys-
ical address 21–0 where ADDR1–0 corresponds to the 1st/2nd/3rd/4th 8-bit
word. The external physical address map is shown in Table 5-3.

For more information, see “External Port” in the ADSP-2136x SHARC
Processor Hardware Reference for the ADSP-21367/8/9 Processors.

SDRAM Address Mapping

The address that is seen from the processor core and DMA controller is
referred as IA31–0 in the following sections. The IA address is divided
into three parts to generate the SDRAM row, column and bank addresses.

On the ADSP-21367/8/9 processors, bank 0 starts at address 0x20 0000
in external memory and is followed in order by Banks 1, 2, and 3. When
the processor generates an address located within one of the four banks, it
asserts the corresponding memory select line, MS3-0.

Table 5-3. AMi Address Memory Map

Bus Width External
Memory BANK

External Physical Address
(on ADDR23–0)

32-bit (or PKDIS=1) 0 0x20_0000 to 0xFF_FFFF

32-bit (or PKDIS=1) 1, 2 and 3 0x00_0000 to 0xFF_FFFF

16-bit (and PKDIS=0) 0 0x40_0000 to 0xFF_FFFF

16-bit (and PKDIS=0) 1, 2 and 3 0x00_0000 to 0xFF_FFFF

8-bit (and PKDIS=0) 0 0x80_0000 to 0xFF_FFFF

8-bit (and PKDIS=0) 1, 2 and 3 0x00_0000 to 0xFF_FFFF

ADSP-2136x SHARC Processor Programming Reference 5-19

Memory

The ranges of memory are shown in Table 5-4 and Table 5-2.

External memory address space is supported in normal word
addressing mode only. Extended-precision, short word and long
word addressing modes are not supported. Execution from external
memory is also not supported.

For more information, see “External Port” in the ADSP-2136x SHARC
Processor Hardware Reference for the ADSP-21367/8/9 Processors.

Memory Organization and Word Size
The processor’s internal memory is organized as four 16-bit wide by 64K
high columns. These columns of memory are addressable as a variety of
word sizes:

• 64-bit long word data (four columns)

• 48-bit instruction words or 40-bit extended-precision normal word
data (3 columns)

• 32-bit normal word data (2 columns)

• 16-bit short word data (1 column)

Table 5-4. External Memory Address Space for SDRAM Addresses

Bank Size in words Address Range

Bank 0 62M 0x0020 0000 – 0x03FF FFFF

Bank 1 64M 0x0400 0000 – 0x07FF FFFF

Bank 2 64M 0x0800 0000 – 0x0BFF FFFF

Bank 3 64M 0x0C00 0000 – 0x0FFF FFFF

ADSP-2136x Memory Maps

5-20 ADSP-2136x SHARC Processor Programming Reference

Extended-precision normal word (40-bit) data is only accessible if the
IMDWx bit is set in the SYSCTL register. It is left-justified within a three
column location, using bits 47–8 of the location.

Placing 32-Bit and 48-Bit Words

When the processor core or I/O processor addresses memory, the word
width of the access determines which columns within the memory are
accessed. For instruction word (48 bits) or extended-precision normal
word data (40 bits), the word width is 48 bits, and the processor accesses
the memory’s 16-bit columns in groups of three. Because these sets of
three column accesses are packed into a 4 column matrix, there are four
rotations of the columns for storing 40- or 48-bit data. The three column
word rotations within the four column matrix appear in Figure 5-7.

For long word (64 bits), normal word (32 bits), and short word (16 bits)
memory accesses, the processor selects from fixed columns in memory. No
rotations of words within columns occur for these data types.

Figure 5-8 shows the memory ranges for each data size in the processor’s
internal memory.

Figure 5-7. 48-Bit Word Rotations

Column 0Column 1Column 2Column 3

150150150150

Rotation 0Rotation 1

Rotation 1Rotation 2

Rotation 2Rotation 3

A
d

d
re

ss
es

ADSP-2136x SHARC Processor Programming Reference 5-21

Memory

Mixing 32-Bit Words and 48-Bit Words

The processor’s memory organization lets programs freely place memory
words of all sizes (see “Memory Organization and Word Size” on
page 5-19) with few restrictions (see “Restrictions on Mixing 32-Bit
Words and 48-Bit Words” on page 5-23). This memory organization also
lets programs mix (place in adjacent addresses) words of all sizes. This sec-
tion discusses how to mix odd (three column) and even (four column)
data words in the processor’s memory.

Transition boundaries between 48-bit (three column) data and any other
data size can occur only at any 64-bit address boundary within either
internal memory block. Depending on the ending address of the 48-bit
words, there are zero, one, or two empty locations at the transition
between the 48-bit (three column) words and the 64-bit (four column)

Figure 5-8. Mixed Instructions and Data with No Unused Locations

Column 0Column 1Column 2Column 3

150150150150

48-bit word top-348-bit word top-2

48-bit word top-248-bit word top-1

48-bit word top-148-bit word top

A
d

d
re

ss
es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit

data with zero empty locations:

(48-bit word top address)

ADSP-2136x Memory Maps

5-22 ADSP-2136x SHARC Processor Programming Reference

words. These empty locations result from the column rotation for storing
48-bit words. The three possible transition arrangements appear in
Figure 5-8, Figure 5-9, and Figure 5-10.

Figure 5-9. Mixed Instructions and Data With One Unused Location

Column 0Column 1Column 2Column 3

150150150150

48-bit word topEmpty

48-bit word top-1 48-bit word top-2

48-bit word top-2 48-bit word top-3

A
d

d
re

ss
es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit

data with one empty locations:

(48-bit word top address)

ADSP-2136x SHARC Processor Programming Reference 5-23

Memory

Restrictions on Mixing 32-Bit Words and 48-Bit Words

There are some restrictions that stem from the memory column rotations
for three column data (48 or 40-bit words) and they relate to the way that
three column data can mix with two column data (32-bit words) in mem-
ory. These restrictions apply to mixing 48 and 32-bit words, because the
processor uses a normal word address to access both of these types of data
even though 48-bit data maps onto three columns of memory and 32-bit
data maps onto two columns of memory.

When a system has a range of three column (48-bit) words followed by a
range of two column (32-bit) words, there is often a gap of empty 16-bit
locations between the two address ranges. The size of the address gap var-
ies with the ending address of the range of 48-bit words. Because the

Figure 5-10. Mixed Instructions and Data With Two Unused Locations

Column 0Column 1Column 2Column 3

150150150150

48-bit word topEmpty

48-bit word top-148-bit word top

48-bit word top-2

A
d

d
re

ss
es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit

data with two empty locations:

(48-bit word top address)

Empty

48-bit word top-3

ADSP-2136x Memory Maps

5-24 ADSP-2136x SHARC Processor Programming Reference

addresses within the gap alias to both 48 and 32-bit words, a 48-bit write
into the gap corrupts 32-bit locations, and a 32-bit write into the gap cor-
rupts 48-bit locations. The locations within the gap are only accessible
with short word (16-bit) accesses.

Calculating the starting address for two column data that minimizes the
gap after three column data is useful for programs that are mixing three
and two column data. Given the last address of the three column (48-bit)
data, the starting address of the 32-bit range that most efficiently uses
memory can be determined by the equation:

m = B + FLOOR (3/2 (n – B)) + 1)]

where:

• n is the first unused address after the end of 48-bit words

• B is the base normal word address of the internal memory block:
B = 0x80000 (block 1) else B = 0xA0000 (Block 2) B = 0xE0000
(block 3)

• m is the first 32-bit normal word address to use after the end of
48-bit words. For

block 0 = 0x80000 # n # 0x9FFFF

block 1 = 0xA0000 # n # 0xBFFFF

block 2 = 0xC0000 # n # 0xDFFFF

block 3 = 0xE0000 # n # 0xFFFFF

ADSP-2136x SHARC Processor Programming Reference 5-25

Memory

Example: Calculating a Starting Address for 32-Bit Addresses

Given a block of words in the range 0x90000 to 0x92694, the next valid
address is 0x82695. The number of 48-bit words (n) is given as follows:

n = 0x92695 - 0x80000 = 0x12695

When 0x12695is converted to decimal representation, the result is 75413.

The base (B) normal word address of the internal memory block is
0x80000. Since 0x88000 < n < 9FFFF2 then the first 32-bit normal word
address to use after the end of the 48-bit words is given by:

m = 0x80000 + FLOOR(3/2 (75413)) + 1
m = 0x80000 + 0x1B9E0
m = 0x80000 + 0x1B9E0 = 0x9B9E0

The first valid starting 32-bit address is 0x9B9E0.

48-Bit Word Allocation

Another useful calculation for programs that are mixing two and three col-
umn data is to calculate the amount of three column data that minimizes
the gap before starting four column data. Given the starting address of the
two column (32-bit) data, the number of 48-bit words that most effi-
ciently uses memory can be determined by the equation

n = B + FLOOR (2/3 (m – B)) + 1

where:

• m is the first 32-bit normal word address after the end of 32-bit
words (1 m values falls in the valid normal word address space)

• B is the base normal word address of the internal memory block:
B = 0x80000 (block 1) else B = 0xA0000 (Block 2) B = 0xE0000
(block 3)

ADSP-2136x Memory Maps

5-26 ADSP-2136x SHARC Processor Programming Reference

• n is the address of the first 48-bit word to use after the end of
32-bit words

Using Boot Memory
As shown in Figure 5-1, the processor supports an external boot EPROM
or flash. Booting provides the method for automatically loading a program
in to the internal memory of the processor after power-up or after a soft-
ware reset. For information about boot options and the booting process,
see the ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21363/4/5/6 Processors or the ADSP-2136x SHARC Processor Hard-
ware Reference for the ADSP-21367/8/9 Processors.

Reading From Boot Memory

When the processor boots from an EPROM, its I/O processor is
hard-wired to load 256 instructions (384 32-bit words) automatically
from an EPROM (via DMA). Once the initial 256-word DMA is com-
plete, the processor typically needs to maintain access to boot memory,
since most programs occupy more then 256 instructions.

Internal Interrupt Vector Table
The default location of the ADSP-2136x processor’s interrupt vector table
(IVT) depends on the processor’s booting mode. When the processor
boots from an external source (EPROM, SPI port master or slave boot-
ing), the vector table starts at address 0x90000 (normal word). When the
processor is in no boot mode (runs from internal ROM location 0x80000
without loading), the interrupt vector table starts at address 0x80000.

The internal interrupt vector table (IIVT) bit in the SYSCTL register over-
rides the default placement of the vector table. If IIVT is set (=1), the
interrupt vector table starts at address 0x90000 (internal RAM) regardless
of the booting mode.

ADSP-2136x SHARC Processor Programming Reference 5-27

Memory

Internal Memory Data Width
The processor’s internal memory blocks use normal word addressing to
access either single-precision 32-bit data or extended-precision 40-bit
data. Programs select the data width independently for each internal
memory block using the internal memory data width (IMDWx) bits in the
SYSCTL register. If a block’s IMDWx bit is cleared (=0), normal word accesses
to the block access 32-bit data. If a block’s IMDWx bit is set (=1), normal
word accesses to the block access 48-bit data. If a program tries to write
40-bit data (for example, a data register-to-memory transfer), the transfer
truncates the lower 8 bits from the register, writing only the 32 most sig-
nificant bits.

If a program tries to read 40-bit data (for example, a memory-to-data reg-
ister transfer), the transfer zero-fills the lower 8 bits of the register, reading
only the 32 most significant bits (MSBs).

The memory bus exchange (PX) register is the only exception to these
transfer rules—all loads and or stores of the PX register are performed as
48-bit accesses unless forced to a 64-bit access with the LW mnemonic. If
any 40-bit data must be stored in a memory block configured for 32-bit
words, the program uses the PX register to access the 40-bit data in 48-bit
words. Programs should take care not to corrupt any 32-bit data with this
type of access. For more information, see “Restrictions on Mixing 32-Bit
Words and 48-Bit Words” on page 5-23.

The long word (LW) mnemonic only effects normal word address accesses
and overrides all other factors (SIMD, IMDWx).

ADSP-2136x Memory Maps

5-28 ADSP-2136x SHARC Processor Programming Reference

Secondary Processor Element (PEy)
When the PEYEN bit in the MODE1 register is set (=1), the processor is in sin-
gle-instruction, multiple-data (SIMD) mode. In SIMD mode, many data
access operations differ from the processor’s default single-instruction,
single-data (SISD) mode. These differences relate to doubling the amount
of data transferred for each data access.

Accesses in SIMD mode transfer both an explicit (named) location and an
implicit (unnamed, complementary) location. The explicit transfer is a
data transfer between the explicit register and the explicit address, and the
implicit transfer is between the implicit register and the implicit address.

For information on complementary (implicit) registers in SIMD mode
accesses, see “Secondary Processor Element (PEy)” on page 5-28. For
more information on complementary (implicit) memory locations in
SIMD mode accesses, see “Accessing Memory” on page 5-31.

Broadcast Register Loads
The processor’s BDCST1 and BDCST9 bits in the MODE1 register control
broadcast register loading. When broadcast loading is enabled, the proces-
sor writes to complementary registers or complementary register pairs in
each processing element on writes that are indexed with DAG1 register I1
(if BDCST1 =1) or DAG2 register I9 (if BDCST9 =1). Broadcast load accesses
are similar to SIMD mode accesses in that the processor transfers both an
explicit (named) location and an implicit (unnamed, complementary)
location. However, broadcast loading only influences writes to registers
and writes identical data to these registers. Broadcast mode is independent
of SIMD mode.

Table 5-5 shows examples of explicit and implicit effects of broadcast reg-
ister loads to both processing elements. Note that broadcast loading only
effects loads of data registers (register file); broadcast loading does not
effect register stores or loads to other system registers. Furthermore,

ADSP-2136x SHARC Processor Programming Reference 5-29

Memory

broadcast loads only work on register loads; broadcast loading cannot be
used for memory writes. For more information on broadcast loading, see
“Accessing Memory” on page 5-31.

Illegal I/O Processor Register Access
The processor monitors I/O processor register access when the illegal I/O
processor register access (IIRAE) bit in the MODE2 register is set (=1). If
access to the IOP registers is detected, an illegal input condition detected
(IICDI) interrupt occurs. The interrupt is latched in the IRPTL register
when a core access to an IOP register occurs.

The I/O processor’s DMA controller cannot generate the IICDI
interrupt. For more information, see “Mode Control 2 Register
(MODE2)” on page B-11.

Unaligned 64-Bit Memory Access
The processor monitors for unaligned 64-bit memory accesses if the
unaligned 64-bit memory accesses (U64MAE) bit in the MODE2 register (bit
21) is set (=1). An unaligned access is an odd numbered address normal
word access that is forced to 64 bits with the LW mnemonic. When
detected, this condition is an input that can cause an illegal input

Table 5-5. Register Load Dual PE Broadcast Operation

Instruction

(Explicit, PEx Operation)1

1 The post increment in the explicit operation is performed before the implicit instructions are
executed.

(Implicit, PEy operation)

Rx = dm(i1,ma);
Rx = pm(i9,mb);
Rx = dm(i1,ma), Ry = pm(i9,mb);

Sx = dm(i1,ma);
Sx = pm(i9,mb);
Sx = dm(i1,ma), Sy = pm(i9,mb);

Using Memory Access Status

5-30 ADSP-2136x SHARC Processor Programming Reference

condition detected (IICDI) interrupt if the interrupt is enabled in the
IMASK register. For more information, see “Mode Control 2 Register
(MODE2)” on page B-11.

The following code example shows the access for even and odd addresses.
When accessing an odd address, the sticky bit is set to indicate the
unaligned access.

bit set mode2 U64MAE; /* set testbit for aligned or

 unaligned 64-bit access*/

r0 = 0x11111111;

r1 = 0x22222222;

pm(0x98200) = r0(lw); /* even address in 32-bit, access

 is aligned */

pm(0x98201) = r0(lw); /* odd address in 32-bit, sticky

 bit is set */

Using Memory Access Status
As described in “Illegal I/O Processor Register Access” on page 5-29 and
“Unaligned 64-Bit Memory Access” on page 5-29, the processor can pro-
vide illegal access information for long word or I/O register accesses.
When these conditions occur, the processor updates an illegal condition
flag in a sticky status (STKYx) register. Either of these two conditions can
also generate a maskable interrupt. Two ways to use illegal access informa-
tion are:

• Interrupts. Enable interrupts and use an interrupt service routine
(ISR) to handle the illegal access condition immediately. This
method is appropriate if it is important to handle all illegal accesses
as they occur.

ADSP-2136x SHARC Processor Programming Reference 5-31

Memory

• STKYx registers. Sticky registers hold a value that can be checked
for a specific condition at a later time. Use the Bit Tst instruction
to examine illegal condition flags in the STKYx register after an
interrupt to determine which illegal access condition occurred.

Accessing Memory
The word width of processor core accesses to internal memory include:

• 48-bit access for instruction words, extended-precision normal
word (40-bit) data, and PX register

• 64-bit access for long word data, normal word (32-bit) data, or PX
register data with the LW mnemonic

• 32-bit access for normal word (32-bit) data

• 16-bit access for short word data

Long word accesses (both forced and unforced) should not be made
to memory-mapped registers.

Accesses to IOP memory spaces should not use type 1 (dual access)
or LW instructions.

The processor determines whether a normal word access is 32 or 40 bits
from the internal memory block’s IMDWx setting. For more information,
see “Internal Memory Data Width” on page 5-27. While mixed accesses of
48-bit words and 16-, 32-, or 64-bit words at the same address are not
allowed, mixed read/writes of 16-, 32-, and 64-bit words to the same
address are allowed. For more information, see “Restrictions on Mixing
32-Bit Words and 48-Bit Words” on page 5-23.

Accessing Memory

5-32 ADSP-2136x SHARC Processor Programming Reference

The processor’s DM and PM buses support 24 combinations of regis-
ter-to-memory data access options. The following factors influence the
data access type:

• Size of words—short word, normal word, extended-precision nor-
mal word, or long word

• Number of words—single or dual-data move

• Processor mode—SISD, SIMD, or broadcast load

Access Word Size
The processor’s internal memory accommodates the following word sizes:

• 64-bit word data

• 48-bit instruction words

• 40-bit extended-precision normal word data

• 32-bit normal word data

• 16-bit short word data

Long Word (64-Bit) Accesses

A program makes a long word (64-bit) access to internal memory using an
access to a long word address. Programs can also make a 64-bit access
through normal word addressing with the LW mnemonic or through a PX
register move with the LW mnemonic. The address ranges for internal
memory accesses appear in Table 5-1 on page 5-14.

When data is accessed using long word addressing, the data is always long
word aligned on 64-bit boundaries in internal memory space. When data
is accessed using normal word addressing and the LW mnemonic, the pro-
gram should maintain this alignment by using an even normal word

ADSP-2136x SHARC Processor Programming Reference 5-33

Memory

address (least significant bit of address = 0). This register selection aligns
the normal word address with a 64-bit boundary (long word address) See
“Unaligned 64-Bit Memory Access” on page 5-29.

All long word accesses load or store two consecutive 32-bit data values.
The register file source or destination of a long word access is a set of two
neighboring data registers in a processing element. In a forced long word
access (uses the LW mnemonic), the even (normal word address) location
moves to or from the explicit register in the neighbor-pair, and the odd
(normal word address) location moves to or from the implicit register in
the neighbor-pair. For example, the following long word moves could
occur:

DM(0x98000) = R0 (LW);

/* The data in R0 moves to location DM(0x98000), and the data in

R1 moves to location DM(0x98001) */

R0 = DM(0x98003)(LW);

/* The data at location DM(0x98002) moves to R0, and the data at

location DM(0x98003) moves to R1 */

The example shows that R0 and R1 are neighbor registers in the same pro-
cessing element. Table 5-6 lists the other neighbor register assignments
that apply to long word accesses.

In unforced long word accesses (accesses to LW memory space), the proces-
sor places the lower 32 bits of the long word in the named (explicit)
register and places the upper 32 bits of the long word in the neighbor
(implicit) register.

Programs can monitor for unaligned 64-bit accesses by enabling the
U64MAE bit. For more information, see “Unaligned 64-Bit Memory Access”
on page 5-29.

The long word (LW) mnemonic only effects normal word address
accesses and overrides all other factors (PEYEN, IMDWx).

Accessing Memory

5-34 ADSP-2136x SHARC Processor Programming Reference

Instruction Word (48-Bit) and
Extended-Precision Normal Word (40-Bit) Accesses

The sequencer uses 48-bit memory accesses for instruction fetches. Pro-
grams can make 48-bit accesses with PX register moves, which default to
48 bits.

A program makes an extended-precision normal word (40-bit) access to
internal memory using an access to a normal word address when that
internal memory block’s IMDWx bit is set (=1) for 40-bit words. The
address ranges for internal memory accesses appear in Table 5-1 on
page 5-14. For more information on configuring memory for
extended-precision normal word accesses, see “Internal Memory Data
Width” on page 5-27.

The processor transfers the 40-bit data to internal memory as a 48-bit
value, zero-filling the least significant 8 bits on stores and truncating these
8 bits on loads. The register file source or destination of such an access is a
single 40-bit data register.

Table 5-6. Neighbor Registers for Long Word Accesses

PEx Neighbor Registers PEy Neighbor Registers

r0 and r1 s0 and s1

r2 and r3 s2 and s3

r4 and r5 s4 and s5

r6 and r7 s6 and s7

r8 and r9 s8 and s9

r10 and r11 s10 and s11

r12 and r13 s12 and s13

r14 and r15 s14 and s15

ADSP-2136x SHARC Processor Programming Reference 5-35

Memory

Normal Word (32-Bit) Accesses

A program makes a normal word (32-bit) access to internal memory using
an access to a normal word address when that internal memory block’s
IMDWx bit is cleared (=0) for 32-bit words. Programs use normal word
addressing to access all processor memory spaces. The address ranges for
memory accesses appear in Table 5-1 on page 5-14.

The register file source or destination of a normal word access is a single
40-bit data register. The processor zero-fills the least significant 8 bits on
loads and truncates these bits on stores.

Short Word (16-Bit) Accesses

A program makes a short word (16-bit) access to internal memory using
an access to a short word address. The address ranges for internal memory
accesses appear in Table 5-1 on page 5-14.

The register file source or destination of such an access is a single 40-bit
data register. The processor zero-fills the least significant 8 bits on loads
and truncates these bits on stores. The 16-bit data occupies bit positions
23–8. Depending on the value of the SSE bit in the MODE1 system register,
the processor loads the register’s upper 16 bits (bits 39-24) by either:

• Zero-filling these bits if SSE=0

• Sign-extending these bits if SSE=1

Setting Data Access Modes
The SYSCTL, MODE1 and MODE2 registers control the operating mode of the
processor’s memory. The SYSCTL register is described in the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21363/4/5/6 Processors
or the ADSP-2136x SHARC Processor Hardware Reference for the

Accessing Memory

5-36 ADSP-2136x SHARC Processor Programming Reference

ADSP-21367/8/9 Processors. Table B-2 on page B-5 lists the bits in the
MODE1 register, and Table B-3 on page B-11 lists the bits in the MODE2
register.

SYSCTL Register Control Bits

The following bits in the SYSCTL register control memory access modes:

• Internal interrupt vector table. SYSCTL Bit 2 (IIVT) forces place-
ment of the interrupt vector table at address 0x90000 regardless of
booting mode (if 1) or allows placement of the interrupt vector
table as selected by the booting mode (if 0).

• Internal memory block data width. SYSCTL Bits 12-9 (IMDWx) select
the normal word data access size for internal memory block 0,
block1, block 2 and block 3. A block’s normal word access size is
fixed as 32 bits (two column, IMDWx=0) or 48 bits (three column,
IMDWx = 1).

Mode 1 Register Control Bits

The following bits in the MODE1 register control memory access modes:

• Secondary processor element (PEy). MODE1 Bit 21 (PEYEN) enables
computations in PEy (SIMD mode), (if 1) or disables PEy (SISD
mode), (if 0).

• Broadcast register loads. MODE1 Bit 22 (BDCST9) and Bit 23
(BDCST1) enable broadcast register loads for memory transfers
indexed with I1 (if BDCST1 = 1) or indexed with I9 (if BDCST9 =1).

ADSP-2136x SHARC Processor Programming Reference 5-37

Memory

Mode 2 Register Control Bits

The following bits in the MODE2 register control memory access modes:

• Illegal IOP register access enable. MODE2 Bit 20 (IIRAE) enables
detection of IOP register access (if 1) or disables detection (if 0).

• Unaligned 64-bit memory access enable. MODE2 Bit 21 (U64MAE)
enables detection of uneven address memory access (if 1) or dis-
ables detection (if 0).

SISD, SIMD, and Broadcast Load Modes
These modes influence memory accesses. For a comparison of their effects,
see the examples in “Data Access Options” on page 5-38. and “Secondary
Processing Element (PEy)” on page 2-45.

Broadcast load mode is a hybrid between SISD and SIMD modes that
transfers dual-data under special conditions. For examples of broadcast
transfers, see “Data Access Options” on page 5-38. For more information
on broadcast load mode, see “Broadcast Register Loads” on page 5-28.

Single- and Dual-Data Accesses
The number of transfers that occur in a cycle influences the data access
operation. As described in “Processor Memory Architecture” on page 5-3,
the processor supports single cycle, dual-data accesses to and from internal
memory for register-to-memory and memory-to-register transfers.
Dual-data accesses occur over the PM and DM bus and act independent
of SIMD/SISD. Though only available for transfers between memory and
data registers, dual-data transfers are extremely useful because they double
the data throughput over single-data transfers.

Accessing Memory

5-38 ADSP-2136x SHARC Processor Programming Reference

Instruction Examples

R8 = DM (I4,M3), PM (I12,M13) = R0; /* Dual access */

R0 = DM (I5,M5); / * Single access */

For examples of data flow paths for single and dual-data transfers, see the
following section, “Data Access Options”.

Data Access Options
The following list shows the processor’s possible memory transfer modes
and provides a cross-reference to examples of each memory access option
that stems from the processor’s data access options.

These modes include the transfer options that stem from the following
data access options:

• The mode of the processor: SISD, SIMD, or Broadcast Load

• The size of access words: long, extended-precision normal word,
normal word, or short word

• The number of transferred words

To take advantage of the processor’s data accesses to three and four col-
umn locations, programs must adjust the interleaving of data into memory
locations to accommodate the memory access mode. The following guide-
lines provide overviews of how programs should interleave data in
memory locations. For more information and examples, see “Instruction
Set” in Chapter 8, Instruction Set, and “Computations Reference” in
Chapter 9, Computations Reference.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer in single- or dual-data, SISD or broadcast load
mode regardless of the data word size (long word, extended-preci-
sion normal word, normal word, or short word).

ADSP-2136x SHARC Processor Programming Reference 5-39

Memory

• Programs should use a multiple of 4 modify values (4, 8, 12, …) to
step through a buffer of short word data in single- or dual-data,
SIMD mode. Programs must step through a buffer twice, once for
addressing even short word addresses and once for addressing odd
short word addresses.

• Programs should use a multiple of 2 modify values (2, 4, 6, …) to
step through a buffer of normal word data in single- or dual-data
SIMD mode.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer of long word or extended-precision normal word
data in single- or dual-data SIMD modes.

Short Word Addressing of Single-Data in SISD Mode

Figure 5-11 shows the SISD single-data, short word addressed access
mode. For short word addressing, the processor treats the data buses as
four 16-bit short word lanes. The 16-bit value for the short word access is
transferred using the least significant short word lane of the PM or DM
data bus. The processor drives the other short word lanes of the data buses
with zeros.

In SISD mode, the instruction accesses the PEx registers to transfer data
from memory. This instruction accesses WORD X0, whose short word
address has “00” for its least significant two bits of address. Other loca-
tions within this row have addresses with least significant two bits of “01”,
“10”, or “11” and select WORD X1, WORD X2, or WORD X3 from memory
respectively. The syntax targets register RX in PEx. The example in
Figure 5-11 targets a PEy register using the syntax SX.

The cross (†) in the PEx registers in Figure 5-11 indicates that the proces-
sor zero-fills or sign-extends the most significant 16 bits of the data
register while loading the short word value into a 40-bit data register.

Accessing Memory

5-40 ADSP-2136x SHARC Processor Programming Reference

Zero-filling or sign-extending depends on the state of the SSE bit in the
MODE1 system register. For short word transfers, the least significant 8 bits
of the data register are always zero.

ADSP-2136x SHARC Processor Programming Reference 5-41

Memory

Figure 5-11. Short Word Addressing of Single-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

0X0000 0X0000

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-42 ADSP-2136x SHARC Processor Programming Reference

Short Word Addressing of Single-Data in SIMD Mode

Figure 5-12 shows the SIMD, single-data, short word addressed access
mode. For short word addressing, the processor treats the data buses as
four 16-bit short word lanes. The explicitly addressed (named in the
instruction) 16-bit value is transferred using the least significant short
word lane of the PM or DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
short word value is transferred using the 47-32 bit short word lane of the
PM or DM data bus. The processor drives the other short word lanes of
the PM or DM data buses with zeros (31-16 bit lane and 63-48 bit lane).

The instruction explicitly accesses the register RX and implicitly accesses
that register’s complementary register, SX. This instruction uses a PEx reg-
ister with an RX mnemonic. If the syntax named the PEy register SX as the
explicit target, the processor uses that register’s complement RX as the
implicit target. For more information on complementary registers, see
“Secondary Processing Element (PEy)” on page 2-45.

The cross (†) in the PEx and PEy registers in Figure 5-12 indicates that the
processor zero-fills or sign-extends the most significant 16 bits of the data
register while loading the short word value into a 40-bit data register.
Zero-filling or sign-extending depends on the state of the SSE bit in the
MODE1 system register. For short word accesses, the least significant 8 bits
of the data register are always zero.

Figure 5-12 shows the data path for one transfer. The processor accesses
short words sequentially in memory. Table 5-7 shows the pattern of
SIMD mode short word accesses. For more information on arranging data
in memory to take advantage of this access pattern, see Figure 5-33 on
page 5-79.

ADSP-2136x SHARC Processor Programming Reference 5-43

Memory

Figure 5-12. Short Word Addressing of Single-Data in SIMD Mode

WORD Y10WORD Y11 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X2 0X00000X0000

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X20X0000† 0X00

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-44 ADSP-2136x SHARC Processor Programming Reference

Short Word Addressing of Dual-Data in SISD Mode

Figure 5-13 shows the SISD, dual-data, short word addressed access
mode. For short word addressing, the processor treats the data buses as
four 16-bit short word lanes. The 16-bit values for short word accesses are
transferred using the least significant short word lanes of the PM and DM
data buses. The processor drives the other short word lanes of the data
buses with zeros. Note that the accesses on both buses do not have to be
the same word width. SISD mode dual-data accesses can handle any com-
bination of short word, normal word, extended-precision normal word, or
long word accesses. For more information, see “Mixed-Word Width
Addressing of Dual-Data in SISD Mode” on page 5-68.

In SISD mode, the instruction explicitly accesses PEx registers. This
instruction accesses WORD X0 in block 1 and WORD Y0 in block 0. Each of
these words has a short word address with “00” for its least significant two
bits of address. Other accesses within these four column locations have
addresses with their least significant two bits as “01”, “10”, or “11” and
select WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory respectively.
The syntax explicitly accesses registers RX and RY in PEx. The example tar-
gets PEy registers when using the syntax SX or SY.

The cross (†) in the PEx registers in Figure 5-13 indicates that the proces-
sor zero-fills or sign-extends the most significant 16 bits of the data
register while loading a short word value into a 40-bit data register.
Zero-filling or sign-extending depends on the state of the SSE bit in the
MODE1 system register. For short word accesses, the least significant 8 bits
of the data register are always zero.

ADSP-2136x SHARC Processor Programming Reference 5-45

Memory

Figure 5-13. Short Word Addressing of Dual-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-46 ADSP-2136x SHARC Processor Programming Reference

Short Word Addressing of Dual-Data in SIMD Mode

Figure 5-14 shows the SIMD, dual-data, short word addressed access. For
short word addressing, the processor treats the data buses as four 16-bit
short word lanes. The explicitly addressed 16-bit values are transferred
using the least significant short word lanes of the PM and DM data bus.
The implicitly addressed short word values are transferred using the 47-32
bit short word lanes of the PM and DM data buses. The processor drives
the other short word lanes of the PM and DM data buses with zeros.

The accesses on both buses do not have to be the same word width. SIMD
mode dual-data accesses can handle combinations of short word and nor-
mal word or extended-precision normal word and long word accesses. For
more information, see “Mixed-Word Width Addressing of Dual-Data in
SIMD Mode” on page 5-70.

The instruction explicitly accesses registers RX and RA, and implicitly
accesses the complementary registers, SX and SA. This instruction uses PEx
registers with the RX and RA mnemonics. If the syntax named PEy registers
SX and SA as the explicit targets, the processor uses those registers’ comple-
ments, RX and RA, as the implicit targets. For more information on
complementary registers, see “Secondary Processing Element (PEy)” on
page 2-45.

The cross (†) in the PEx and PEy registers in Figure 5-14 indicates that the
processor zero-fills or sign-extends the most significant 16 bits of the data
registers while loading the short word values into the 40-bit data registers.
For short word accesses, zero-filling or sign-extending depends on the
state of the SSE bit in the MODE1 system register. For the short word
accesses, the least significant 8 bits of the data register are always zero.

The second word from Block 1 is shown as x2 on the data bus and in the
Sx register. It is shown as Y2 and Y1 respectively. The Sx and SA registers
are transparent and look similar to Rx and RA. All bits should be shown as

ADSP-2136x SHARC Processor Programming Reference 5-47

Memory

in Rx and RA. For more information on arranging data in memory to take
advantage of short word addressing of dual-data in SIMD mode, see
Figure 5-34 on page 5-80.

Figure 5-14. Short Word Addressing of Dual-Data in SIMD Mode

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

PEY REGISTERS

WORD Y2

WORD Y2

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RXPEX REGISTERS RY

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSY

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

WORD X0

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0

WORD Y2

WORD Y1

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-48 ADSP-2136x SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Single-Data in SISD Mode

Figure 5-15 shows the SISD, single-data, 32-bit normal word addressed
access mode. For normal word addressing, the processor treats the data
buses as two 32-bit normal word lanes. The 32-bit value for the normal
word access completes a transfer using the least significant normal word
lane of the PM or DM data bus. The processor drives the other normal
word lanes of the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This instruction
accesses WORD X0 whose normal word address has “0” for its least signifi-
cant address bit. The other access within this four column location has an
address with a least significant bit of “1” and selects WORD X1 from mem-
ory. The syntax targets register RX in PEx. The example targets a PEy
register when using the syntax SX.

For normal word accesses, the processor zero-fills the least significant 8
bits of the data register on loads and truncates these bits on stores to
memory.

ADSP-2136x SHARC Processor Programming Reference 5-49

Memory

Figure 5-15. Normal Word Addressing of Single-Data in SISD Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

0X0000

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-50 ADSP-2136x SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Single-Data in SIMD Mode

Figure 5-16 shows the SIMD, single-data, normal word addressed access
mode. For normal word addressing, the processor treats the data buses as
two 32-bit normal word lanes. The explicitly addressed (named in the
instruction) 32-bit value completes a transfer using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) normal word value completes a transfer using the most significant
normal word lane of the PM or DM data bus.

In Figure 5-16, the explicit access targets the named register RX, and the
implicit access targets that register’s complementary register, SX. This
instruction uses a PEx register with an RX mnemonic. If the syntax named
the PEy register SX as the explicit target, the processor would use that regis-
ter’s complement, RX, as the implicit target. For more information on
complementary registers, see “Secondary Processing Element (PEy)” on
page 2-45.

For normal word accesses, the processor zero-fills the least significant 8
bits of the data register on loads and truncates these bits on stores to
memory.

Figure 5-16 shows the data path for one transfer. The processor accesses
normal words sequentially in memory (see Table 5-7). For more informa-
tion on arranging data in memory to take advantage of this access pattern,
see Figure 5-34 on page 5-80.

Table 5-7. Normal Word Addressing in SIMD Mode

Explicit Normal Word Accessed Implicit Normal Word Accessed

Word X0 (address LSB = 0) Word X1 (address LSB = 1)

Word X1 (address LSB = 1) Word X2 (address LSB = 0)

ADSP-2136x SHARC Processor Programming Reference 5-51

Memory

Figure 5-16. Normal Word Addressing of Single-Data in SIMD Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PEY
REGISTER S

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X1

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X1 0X00

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-52 ADSP-2136x SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Dual-Data in SISD Mode

Figure 5-17 shows the SISD dual-data, 32-bit normal word addressed
access mode. For normal word addressing, the processor treats the data
buses as two 32-bit normal word lanes. The 32-bit values for normal word
accesses transfer using the least significant normal word lanes of the PM
and DM data buses. The processor drives the other normal word lanes of
the data buses with zeros. Note that the accesses on both buses do not
have to be the same word width. SISD mode dual-data accesses can handle
any combination of short word, normal word, extended-precision normal
word, or long word accesses. For more information, see “Mixed-Word
Width Addressing of Dual-Data in SISD Mode” on page 5-68.

In Figure 5-17, the access targets the PEx registers in a SISD mode opera-
tion. This instruction accesses WORD X0 in block 1 and WORD Y0 in block 0.
Each of these words has a normal word address with 0 for its least signifi-
cant address bit. Other accesses within these four column locations have
addresses with the least significant bit of 1 and select WORD X1/Y1 from
memory. The syntax targets registers RX and RY in PEx. The example tar-
gets PEy registers when using the syntax SX or SY.

For normal word accesses, the processor zero-fills the least significant 8
bits of the data register on loads and truncates these bits on stores to
memory.

ADSP-2136x SHARC Processor Programming Reference 5-53

Memory

Figure 5-17. Normal Word Addressing of Dual-Data in SISD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-54 ADSP-2136x SHARC Processor Programming Reference

32-Bit Normal Word Addressing of Dual-Data in SIMD Mode

Figure 5-18 shows the SIMD, dual-data, 32-bit normal word addressed
access mode. For normal word addressing, the processor treats the data
buses as two 32-bit normal word lanes. The explicitly addressed (named in
the instruction) 32-bit values are transferred using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) normal word values are transferred using the most significant nor-
mal word lanes of the PM and DM data bus. Note that the accesses on
both buses do not have to be the same word width. SIMD mode dual-data
accesses can handle combinations of short word and normal word or
extended-precision normal word and long word accesses. For more infor-
mation, see “Mixed-Word Width Addressing of Dual-Data in SIMD
Mode” on page 5-70.

In Figure 5-18, the explicit access targets the named registers RX and RA,
and the implicit access targets those register’s complementary registers SX
and SA. This instruction uses the PEx registers with the RX and RA mne-
monics. If the syntax named PEy registers SX and SA as the explicit targets,
the processor would use those registers’ complements, RX and RA, as the
implicit targets. For more information on complementary registers, see
“Secondary Processing Element (PEy)” on page 2-45.

For normal word accesses, the processor zero-fills the least significant 8
bits of the data register on loads and truncates these bits on stores to
memory.

Figure 5-17 shows the data path for one transfer. The processor accesses
normal words sequentially in memory as shown in Table 5-7 on
page 5-50. For more information on arranging data in memory to take
advantage of this access pattern, see Figure 5-34 on page 5-80.

ADSP-2136x SHARC Processor Programming Reference 5-55

Memory

Figure 5-18. Normal Word Addressing of Dual-Data in SIMD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

WORD X0

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y0 WORD X1

WORD Y0 0X00

WORD X1WORD Y1

WORD Y1

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-56 ADSP-2136x SHARC Processor Programming Reference

Extended-Precision Normal Word Addressing of Single-Data

Figure 5-19 on page 5-57 displays a possible single-data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the processor treats each data bus as a 40-bit
extended-precision normal word lane. The 40-bit value for the
extended-precision normal word access is transferred using the most sig-
nificant 40 bits of the PM or DM data bus. The processor drives the lower
24 bits of the data buses with zeros.

In Figure 5-19, the access targets a PEx register in a SISD or SIMD mode
operation; extended-precision normal word single-data access operate the
same in SISD or SIMD mode. This instruction accesses WORD X0 with syn-
tax that targets register RX in PEx. The example targets a PEy register when
using the syntax SX.

ADSP-2136x SHARC Processor Programming Reference 5-57

Memory

Figure 5-19. Extended-Precision Normal Word Addressing of Single-Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, EXT. PREC. NORMAL WORD, SINGLE-DATA
TRANSFERS ARE:

UREG = PM(EXTENDED PRECISION NORMAL WORD ADDRESS);
UREG = DM(EXTENDED PRECISION NORMAL WORD ADDRESS);
PM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;
DM(EXTENDED PRECISION NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-58 ADSP-2136x SHARC Processor Programming Reference

Extended-Precision Normal Word Addressing of Dual-Data in
SISD Mode

Figure 5-20 shows the SISD, dual-data, 40-bit extended-precision normal
word addressed access mode. For extended-precision normal word
addressing, the processor treats each data bus as a 40-bit extended-preci-
sion normal word lane. The 40-bit values for the extended-precision
normal word accesses are transferred using the most significant 40 bits of
the PM and DM data bus. The processor drives the lower 24 bits of the
data buses with zeros. Note that the accesses on both buses do not have to
be the same word width. SISD mode, dual-data accesses can handle any
combination of short word, normal word, extended-precision normal
word, or long word accesses. For more information, see “Mixed-Word
Width Addressing of Dual-Data in SISD Mode” on page 5-68.

In Figure 5-20, the access targets the PEx registers in a SISD mode opera-
tion. This instruction accesses WORD X0 in block 1 and WORD Y0 in block 0
with syntax that targets registers RX and RY in PEx. The example targets a
PEy register when using the syntax SX or SY.

ADSP-2136x SHARC Processor Programming Reference 5-59

Memory

Figure 5-20. Extended-Precision Normal Word Addressing of Dual-Data
in SISD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION NORMAL WORD, DUAL-DATA
TRANSFERS ARE:

DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-60 ADSP-2136x SHARC Processor Programming Reference

Extended-Precision Normal Word Addressing of Dual-Data in
SIMD Mode

Figure 5-21 shows the SIMD, dual-data, 40-bit extended-precision nor-
mal word addressed access mode. For extended-precision normal word
addressing, the processor treats each data bus as a 40-bit extended-preci-
sion normal word lane.

Because this word size approaches the limit of the data buses capacity, this
SIMD mode transfer only moves the explicitly addressed locations and
restricts data bus usage. The explicitly addressed (named in the instruc-
tion) 40-bit values that are transferred over the DM bus must source or
sink a PEx data register, and the explicitly addressed (named in the instruc-
tion) 40-bit values that are transferred over the PM bus must source or
sink a PEy data register; there are no implicit transfers in this mode. The
40-bit values for the extended-precision normal word accesses are trans-
ferred using the most significant 40 bits of the PM and DM data bus. The
processor drives the lower 24 bits of the data buses with zeros.

The accesses on both buses do not have to be the same word width.
This special case of SIMD mode dual-data accesses can handle any
combination of extended-precision normal word or long word
accesses. For more information, see “Mixed-Word Width Address-
ing of Dual-Data in SIMD Mode” on page 5-70.

In Figure 5-21, the access targets PEx and PEy registers in a SIMD mode
operation. This instruction accesses WORD X0 in block 1 with syntax that
targets register RX in PEx and accesses WORD Y0 in block 0 with syntax that
targets register SX in PEy.

ADSP-2136x SHARC Processor Programming Reference 5-61

Memory

Figure 5-21. Extended-Precision Normal Word Addressing of Dual-Data
in SIMD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, EXTENDED PRECISION NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

PEY DREG = PM(EP NORMAL WORD ADDRESS), PEX DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = PEY DREG, DM(EP NORMAL WORD ADDRESS) = PEX DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), SX = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

WORD Y0

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X0000 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-62 ADSP-2136x SHARC Processor Programming Reference

Long Word Addressing of Single-Data

Figure 5-22 displays one possible single-data, long word addressed access.
For long word addressing, the processor treats each data bus as a 64-bit
long word lane. The 64-bit value for the long word access completes a
transfer using the full width of the PM or DM data bus.

In Figure 5-22, the access targets a PEx register in a SISD or SIMD mode
operation. Long word single-data access operate the same in SISD or
SIMD mode. This instruction accesses WORD X0 with syntax that explicitly
targets register RX and implicitly targets its neighbor register, RY, in PEx.
The processor zero-fills the least significant 8 bits of both the registers.
The example targets PEy registers when using the syntax SX. For more
information on how neighbor registers (listed in Table 5-6) work, see
“Long Word (64-Bit) Accesses” on page 5-32.

ADSP-2136x SHARC Processor Programming Reference 5-63

Memory

Figure 5-22. Long Word Addressing of Single-Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-64 ADSP-2136x SHARC Processor Programming Reference

Long Word Addressing of Dual-Data in SISD Mode

Figure 5-23 shows the SISD, dual-data, long word addressed access mode.
For long word addressing, the processor treats each data bus as a 64-bit
long word lane. The 64-bit values for the long word accesses completes a
transfer using the full width of the PM or DM data bus.

In Figure 5-23, the access targets PEx registers in SISD mode operation.
This instruction accesses WORD X0 and WORD Y0 with syntax that explicitly
targets registers RX and RA and implicitly targets their neighbor registers RY
and RB in PEx. The processor zero-fills the least significant 8 bits of all the
registers. The example targets PEy registers when using the syntax SX and
SA. For more information on how neighbor registers (listed in Table 5-6)
work, see “Long Word (64-Bit) Accesses” on page 5-32.

Programs must be careful not to explicitly target neighbor registers in this
instruction. While the syntax lets programs target these registers, one of
the explicit accesses targets the implicit target of the other access. The pro-
cessor resolves this conflict by performing only the access with higher
priority. For more information on the priority order of data register file
accesses, see “Data Register File” on page 2-37.

ADSP-2136x SHARC Processor Programming Reference 5-65

Memory

Figure 5-23. Long Word Addressing of Dual-Data in SISD Mode

0X00

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-320X00WORD Y0, 31-0WORD Y0, 63-32 0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-66 ADSP-2136x SHARC Processor Programming Reference

Long Word Addressing of Dual-Data in SIMD Mode

Figure 5-24 shows the SIMD, dual-data, long word addressed access mode
that targets internal memory space. For long word addressing, the proces-
sor treats each data bus as a 64-bit long word lane. The 64-bit values for
the long word accesses completes a transfer using the full width of the PM
or DM data bus.

Because this word size approaches the limit of the data buses’ capacity,
this SIMD mode transfer only moves the explicitly addressed locations
and restricts data bus usage. The explicitly addressed (named in the
instruction) 64-bit values transferred over the DM bus must source or sink
a PEx data register, and the explicitly addressed (named in the instruction)
64-bit values transferred over the PM bus must source or sink a PEy data
register; there are no implicit transfers in this mode.

In Figure 5-24, the access targets PEx and PEy registers in a SIMD mode
operation. This instruction accesses WORD X0 in block 1 with syntax that
targets register RX and its neighbor register RY in PEx and accesses WORD Y0
in block 0 with syntax that targets register SX and its neighbor register SY
in PEy. The processor zero-fills the least significant 8 bits of all the regis-
ters. For more information on how neighbor registers (listed in Table 5-6)
work, see “Long Word (64-Bit) Accesses” on page 5-32.

The accesses on both buses do not have to be the same word width.
This special case of SIMD mode dual-data accesses can handle any
combination of extended-precision normal word or long word
accesses. “Mixed-Word Width Addressing of Dual-Data in SIMD
Mode” on page 5-70.

ADSP-2136x SHARC Processor Programming Reference 5-67

Memory

Figure 5-24. Long Word Addressing of Dual-Data in SIMD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, LONG WORD, DUAL-DATA TRANSFERS ARE:
PEY DREG = PM(LONG WORD ADDRESS), PEX DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = PEY DREG, DM(LONG WORD ADDRESS) = PEX DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(LONG WORD Y0 ADDRESS);

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32 0X00

WORD Y0, 31-0WORD Y0, 63-32

0X00

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-68 ADSP-2136x SHARC Processor Programming Reference

Mixed-Word Width Addressing of Dual-Data in SISD Mode

Figure 5-25 shows an example of a mixed-word width, dual-data, SISD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers a short word access on the PM bus.
The memory architecture permits mixing all other combinations of
dual-data SISD mode short word, normal word, extended-precision nor-
mal word, and long word accesses.

In case of conflicting dual access to the data register file, the pro-
cessor only performs the access with higher priority. For more
information on how the processor prioritizes accesses, see “Data
Register File” on page 2-37.

ADSP-2136x SHARC Processor Programming Reference 5-69

Memory

Figure 5-25. Mixed-Word Width Addressing of Dual-Data in SISD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, MIXED WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT, NORMAL, EP NORMAL, LONG ADD), DREG = DM(SHORT, NORMAL, EP NORMAL, LONG ADD);
PM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG, DM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1 WORD Y0

WORD Y00X0000

WORD Y00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-70 ADSP-2136x SHARC Processor Programming Reference

Mixed-Word Width Addressing of Dual-Data in SIMD Mode

Figure 5-26 shows an example of a mixed-word width, dual-data, SIMD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers an extended-precision normal word
access on the PM bus.

The memory architecture permits mixing SIMD mode dual-data
short word and normal word accesses or extended-precision normal
word and long word accesses. No other combinations of mixed
word dual-data SIMD mode accesses are permissible.

ADSP-2136x SHARC Processor Programming Reference 5-71

Memory

Figure 5-26. Mixed-Word Width Addressing of Dual-Data in SIMD
Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, MIXED WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(ADDRESS), DREG = DM(ADDRESS);
PM(ADDRESS) = DREG, DM(ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(EP NORMAL WORD Y0 ADDRESS);

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

WORD Y0 0X00000X00

WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

Accessing Memory

5-72 ADSP-2136x SHARC Processor Programming Reference

Broadcast Load Access

Figure 5-27 through Figure 5-34 provide examples of broadcast load
accesses for single and dual-data transfers. These examples show that the
broadcast load’s memory and register access is a hybrid of the correspond-
ing non-broadcast SISD and SIMD mode accesses. The exceptions to this
relation are broadcast load dual-data, extended-precision normal word and
long word accesses. These broadcast accesses differ from their correspond-
ing non-broadcast mode accesses.

ADSP-2136x SHARC Processor Programming Reference 5-73

Memory

Figure 5-27. Short Word Addressing of Single-Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-74 ADSP-2136x SHARC Processor Programming Reference

Figure 5-28. Short Word Addressing of Dual-Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST,
SHORT WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RY = PM(SHORT WORD Y0 ADDRESS);

WORD Y00X0000

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

WORD Y00X0000† 0X00

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X00X0000†WORD Y00X0000†

0X0000 0X0000 0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA
ACCESSES CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2136x SHARC Processor Programming Reference 5-75

Memory

Figure 5-29. Normal Word Addressing of Single-Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0 0X00

0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-76 ADSP-2136x SHARC Processor Programming Reference

Figure 5-30. Normal Word Addressing of Dual-Data in Broadcast Load

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

WORD Y0 0X00

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

WORD X0 0X00WORD Y0 0X00

0X0000 0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES.
DUAL DATA ACCESSES CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2136x SHARC Processor Programming Reference 5-77

Memory

Figure 5-31. Extended-Precision Normal Word Addressing of Single-Data
in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED NORMAL WORD, SINGLE-DATA
TRANSFERS ARE:

UREG = PM(EP NORMAL WORD ADDRESS);
UREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = UREG;
DM(EP NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-78 ADSP-2136x SHARC Processor Programming Reference

Figure 5-32. Extended-Precision Normal Word Addressing of Dual-Data
in Broadcast Load

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(EP NORMAL WORD ADDRESS), DREG = DM(EPNORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = DREG, DM(EP NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

WORD Y0 WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES.
DUAL DATA ACCESSES CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2136x SHARC Processor Programming Reference 5-79

Memory

Figure 5-33. Long Word Addressing of Single-Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

WORD X0, 31-0WORD X0, 63-32 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

Accessing Memory

5-80 ADSP-2136x SHARC Processor Programming Reference

Figure 5-34. Long Word Addressing of Dual-Data in Broadcast Load

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

WORD X0, 31-0WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

0X00

0X00 0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0X00

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES.
DUAL DATA ACCESSES CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

ADSP-2136x SHARC Processor Programming Reference 5-81

Memory

Shadow Write FIFO
Because the processor’s internal memory operates at high speeds, writes to
the memory do not go directly into the memory array, but rather to a
two-deep FIFO called the shadow write FIFO. This FIFO uses a non-read
cycle (either a write cycle, or a cycle in which there is no access of internal
memory) to load data from the FIFO into internal memory. When an
internal memory write cycle occurs, the FIFO loads any data from a previ-
ous write into memory and accepts new data.

Shadow Write FIFO Use in SIMD Mode
The shadow write FIFO is located between the internal memory array of
the ADSP-2136x processor and the core.

When performing SIMD reads that cross long word address boundaries
and the data read resides in the shadow write FIFO, the read in SIMD
mode causes unpredictable results for explicit accesses of odd normal word
addresses in internal memory. The implicit part of this SIMD mode trans-
fer incorrectly accesses the previous sequential even address when the data
is in the shadow write FIFO.

When the read data resides in internal memory, a SIMD mode explicit
access to normal word address 0x98001 will result in an implicit access to
the next sequential even address value. As shown in Table 5-8, a SIMD
mode explicit access to normal word address 0x98001 results in an
implicit access to normal word address 0x98002.

Table 5-8. Data Resides in Internal Memory

Explicit “R0” R0 = dm(I0,M0) Explicit “S0” S0 = dm(I0,M0);

Explicit Address (I0) R0 S0 R0 S0

0x80001 32-bit word at
0x80001

32-bit word at
0x80002

32-bit word at
0x80002

32-bit word at
0x80001

Shadow Write FIFO

5-82 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference 6-1

6 JTAG TEST EMULATION PORT

In addition to boundary scan, the JTAG test emulation port supports
other functions including background telemetry channels, cycle counting
with EMUCLK, user-configurable hardware breakpoint support, breakpoints,
and a register for viewing the revision ID.

JTAG Test Access Port
The emulator uses JTAG boundary scan logic for ADSP-2136x processor
communications and control. This JTAG logic consists of a state machine,
a five pin test access port (TAP), and shift registers. The state machine and
pins conform to the IEEE 1149.1 specification. The TAP pins appear in
Table 6-1. A special pin (EMU) is used in the JTAG emulators from Analog
Devices. This pin is not defined in the IEEE-1149.1 specification. This
signal notifies the ADSP-21364 EZ-KIT Lite that the processor has com-
pleted an operation.

Table 6-1. JTAG Test Access Port (TAP) Pins

Pin I/O Function

TCK I Test Clock: pin used to clock the TAP state machine
(Asynchronous with CLKIN)

TMS I Test Mode Select: pin used to control the TAP state machine sequence

TDI I Test Data In: serial shift data input pin

TDO O Test Data Out: serial shift data output pin

TRST I Test Logic Reset: resets the TAP state machine

Boundary Scan

6-2 ADSP-2136x SHARC Processor Programming Reference

A boundary scan description language (BSDL) file for the ADSP-2136x
processor is available on the Analog Devices Web site.

Refer to the IEEE 1149.1 JTAG specification for detailed information on
the JTAG interface. This chapter assumes a working knowledge of the
JTAG specification.

Boundary Scan
A boundary scan allows a system designer to test interconnections on a
printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long
shift register so that data can be read from or written to them through a
serial test access port (TAP). The ADSP-2136x processor contains a test
access port compatible with the industry-standard IEEE 1149.1 (JTAG)
specification. Only the IEEE 1149.1 features specific to the ADSP-2136x
are described here. For more information, see the IEEE 1149.1 specifica-
tion and the other documents listed in “References” on page 6-17.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the ADSP-2136x processor. Each input has a
latch that monitors the value of the incoming signal and can also drive
data into the chip in place of the incoming value. Similarly, each output
has a latch that monitors the outgoing signal and can also drive the output
in place of the outgoing value. For bidirectional pins, the combination of
input and output functions is available.

Every latch associated with a pin is part of a single serial shift register path.
Each latch is a master/slave type latch with the controlling clock provided
externally. This clock (TCK) is asynchronous to the ADSP-2136x system
clock (CLKIN).

ADSP-2136x SHARC Processor Programming Reference 6-3

JTAG Test Emulation Port

The processor emulation features halt the processor at a predefined point
to examine the state of the processor, execute arbitrary code, restore the
original state, and continue execution.

The ADSP-2136x processor emulation features are a superset of the
ADSP-21160 processor emulation features. All emulation features
supported by previous SHARC processors are supported on the
ADSP-21364 processor.

There are several changes/extensions to the base functionality of the
ADSP-2116x processor emulation capability, which require changes in the
ADSP-21364 EZ-KIT software for ADSP-2136x processor support. These
extensions include:

• New registers for added functionality: EEMUCTL, EEMUSTAT, EEMUIN,
EEMUOUT, and SHADOW_SHIFT

• A new JTAG instruction to support these additional registers:
EEMUINDATA, EEMUOUTDATA, and EEMUCTL

• New functionality to allow the tools software to support statistical
profiling

• Support for background telemetry, user-definable breakpoint inter-
rupts, and cycle counting

Several on-chip facilities are directly accessed through the JTAG interface.
These facilities are listed in Table 6-2 on page 6-6. Other emulation facil-
ities are only indirectly accessible. To indirectly access the facilities that do
not appear in Table 6-2, scan the instruction which moves data of interest
to/from the PX register, scan the PX data (if the instruction is a PX read), let
the core execute the instruction, and then scan the PX register out (if the
instruction is a PX write).

Background Telemetry Channel (BTC)

6-4 ADSP-2136x SHARC Processor Programming Reference

The breakpoint start/end registers are mapped into the IOP register space
of the ADSP-2136x. The EMUN, EMUCLK, and EMUCLK2 registers occupy the
same Ureg address space as the ADSP-2106x processor. These facilities are
read-only by the ADSP-2136x processor core in normal operation.

Background Telemetry Channel (BTC)
Programmers can read and write data to a set of memory-mapped buffers
(EEMUIN and EEMUOUT) that are accessible by the emulator while the core is
running. This function allows the emulator to feed new data to the proces-
sor or get updates from the processor in real time. A 32-bit
memory-mapped I/O register called EEMUSTAT can be used to enable this
functionality and check the status of the input and output data buffers.
Low priority emulator interrupts are generated when the EEMUIN buffer is
full or the EEMUOUT FIFO is empty so that the processor core can handle
reading/writing data from/to the buffers in an interrupt service routine
(ISR). These interrupts are handled in the same way that normal inter-
rupts are handled in the processor.

User-Definable Breakpoint Interrupts
Breakpoint interrupts enable users to write to the breakpoint registers
directly so that they can induce an interrupt. Such interrupts may contain
error handling if the processor accesses any of the addresses in the address
range defined in the breakpoint registers.

For more information, see “Breakpoint Registers (PSx, DMx, IOx, and
EPx)” on page 6-11.

ADSP-2136x SHARC Processor Programming Reference 6-5

JTAG Test Emulation Port

Restrictions
Please note the following restriction when setting breakpoints.

• If a breakpoint interrupt comes at a point when a program is com-
ing out of an interrupt service routine of a prior breakpoint, then
in some cases the breakpoint status does not reflect that the second
breakpoint interrupt has occurred.

• If an instruction address breakpoint is placed just after a short loop,
a spurious breakpoint is generated.

Silicon Revision ID
The ADSP-2136x processor contains an 8-bit revision ID (REVPID), or the
device identification register. This register can be read by using the JTAG
instruction EMUPID. The I/O address of REVPID is 0x30026.

JTAG Related Registers
Information in this section describes public (JTAG) registers. These
include:

• An instruction register, described on on page 6-6

• The EEMUSTAT register, described on on page 6-13

• Breakpoint registers, described on on page 6-11

• The EEMUIN register, described on on page 6-14

• The EEMUOUT register, described on on page 6-14

• The EMUCLK and EMUCLK2 registers, described on on page 6-14

JTAG Related Registers

6-6 ADSP-2136x SHARC Processor Programming Reference

Instruction Register
The instruction register shifts an instruction into the processor. This
instruction selects the performed test and/or the access of the test data reg-
ister. The instruction register is 5 bits long with no parity bit. A value of
11111 binary is loaded (LSB nearest TDO) into the instruction register
whenever the TAP reset state is entered.

The new JTAG instruction set, shown in Table 6-2, lists the binary code
for each instruction. Bit 0 is nearest TDO and bit 4 is nearest TDI. No data
registers are placed into test modes by any of the public instructions. The
instructions affect the processor as defined in the 1149.1 specification.
The optional instructions RUNBIST, IDCODE, and USERCODE are not sup-
ported by the ADSP-2136x processor.

The entry under “Register” is the serial scan path, either boundary or
bypass, enabled by the instruction. Figure 6-1 shows these register paths.
The 1-bit bypass register is fully defined in the 1149.1 specification.

Table 6-2. JTAG Instruction Register Codes

43210 Register Instruction Inmode Outmode

11111 Bypass BYPASS 0 0

00000 Boundary EXTEST 0 1

10000 Boundary SAMPLE 0 0

11000 Boundary INTEST 1 1

11100 BRKSTAT EMULATION 0 0

01001 EEMUIN EMULATION 0 0

01011 EEMUOUT EMULATION 0 0

11101 EMUPID REV-id register 0 0

ADSP-2136x SHARC Processor Programming Reference 6-7

JTAG Test Emulation Port

No special values need to be written into any register prior to the selection
of any instruction. As Table 6-2 shows, certain instructions are reserved
for emulator use. For more information, see Figure 6-1.

Other registers, reserved for use by Analog Devices, exist. However, this
group of registers should not be accessed as they can cause damage to the
part.

Figure 6-1. Serial Scan Path

0

1

2164

TDO

3 1

04

2

TDI 1

BOUNDARY REGISTER

BYPASS REGISTER

INSTRUCTION REGISTER

165

166

JTAG Related Registers

6-8 ADSP-2136x SHARC Processor Programming Reference

Emulation Control Register (EMUCTL)
The EMUCTL serial shift register is located in the system unit. The EMUCTL
register is 40 bits wide and is accessed by the emulator through the TAP.
The EMUCTL register controls all of the ADSP-2136x processor emulation
functionality. Table 6-3 lists the EMUCTL register’s bits and describes their
function.

Table 6-3. Emulation Control Register (EMUCTL) Descriptions

Bit Name Description

0 EMUENA Emulator Function Enable. Enables processor emulation functions. 0 =
ignore breakpoints and emulator interrupts
1 = respond to breakpoints and emulator interrupts)

1 EIRQENA Emulator Interrupt Enable. Enables the emulation logic to create external
emulator interrupts. (0 = disable, 1 = enable)

2 BKSTOP Enable Autostop on Breakpoint. Enables the processor to generate an
external emulator interrupt when any breakpoint event occurs. 0 = disable,
1 = enable.

3 SS Enable Single Step Mode. Enables single-step operation.
(0 = disable, 1 = enable)

4 SYSRST Software Reset. Resets the processor in the same manner as the software
reset bit in the SYSCTL register. The SYSRST bit must be cleared by the
emulator.
0 = normal operation, 1 = reset.

5 ENBRKOUT Enable the BRKOUT pin. Enables the BRKOUT pin operation.
(0 = BRKOUT pin at high impedance state
1 = BRKOUT pin enabled.

6 IOSTOP Stop IOP DMAs in EMU Space. Disables all DMA requests when the
processor is in emulation space. Data that is currently in the EP, LINK, or
SPORT DMA buffers is held there unless the internal DMA request was
already granted. IOSTOP causes incoming data to be held off and outgo-
ing data to cease. Because SPORT receive data cannot be held off, it is lost
and the overrun bit is set. The direct write buffer (internal memory write)
and the EP pad buffer are allowed to flush any remaining data to internal
memory.
0 = I/O continues, 1 = I/O stops.

ADSP-2136x SHARC Processor Programming Reference 6-9

JTAG Test Emulation Port

7 EPSTOP Stop I/O Processor EP operation in emulation space. Disables all EP
requests when the processor is in emulation space. After an emulation
interrupt is acknowledged, EPSTOP deasserts ACK (deasserts REDY if
host access) to prevent further data from being accepted if the EP is
accessed. The emulator may clear this bit—allowing I/O to continue and
the bus to clear—so that the emulator may use the EP (through BR and
bus lock). Note that the EP bus clears only if accesses are direct writes or
IOP register writes, because all other IOP functions are halted. The EP bus
does not clear if accesses to any of the DMA buffers are extended due to a
buffer full or empty condition. 0 = EP I/O continues, 1 = EP I/O stops.

8 NEGPA11 Negate program memory data address breakpoint. Enable breakpoint
events if the address is greater than the end register value OR less than the
start register value. This function is useful to detect index range violations
in user code.
(0 = disable breakpoint, 1 = enable breakpoint)

9 NEGDA1 Negate data memory address breakpoint #1 See NEGPA1 bit description.

10 NEGDA2 Negate data memory address breakpoint #2. See NEGPA1 bit descrip-
tion.

11 NEGIA1 Negate instruction address breakpoint #1. See NEGPA1 bit description.

12 NEGIA2 Negate instruction address breakpoint #2. See NEGPA1 bit description.

13 NEGIA3 Negate instruction address breakpoint #3. See NEGPA1 bit description.

14 NEGIA4 Negate instruction address breakpoint #4. See NEGPA1 bit description.

15 NEGIO1 Negate I/O address breakpoint. See NEGPA1 bit description.

16 NEGEP1 Negate EP address breakpoint. See NEGPA1 bit description.

17 ENBPA Enable program memory data address breakpoints. Enable each break-
point group. Note that when the ANDBKP bit is set, breakpoint types not
involved in the generation of the effective breakpoint must be disabled. 0 =
disable breakpoints, 1 = enable breakpoints.

18 ENBDA Enable data memory address breakpoints. See ENBPA bit description.

19 ENBIA Enable instruction address breakpoints. See ENBPA bit description.

20 Reserved

Table 6-3. Emulation Control Register (EMUCTL) Descriptions (Cont’d)

Bit Name Description

JTAG Related Registers

6-10 ADSP-2136x SHARC Processor Programming Reference

21 ENBEP Enable external port address breakpoint see ENBPA bit description.

22–23 PA1MODE PA1 breakpoint triggering mode. Trigger on the following conditions:
00 = Breakpoint is disabled
01 = WRITE accesses only
10 = READ accesses only
11 = any access

24–25 DA1MODE DA1 breakpoint triggering mode. See PA1MODE bit description.

26–27 DA2MODE DA2 breakpoint triggering mode. See PA1MODE bit description.

28–29 IO1MODE IO1 breakpoint triggering mode. See PA1MODE bit description.

30–31 EP1MODE EP1 breakpoint triggering mode. See PA1MODE bit description.

32 ANDBKP AND composite breakpoints. Enables ANDing of each breakpoint type to
generate an effective breakpoint from the composite breakpoint signals.
(0=OR breakpoint types, 1=AND breakpoint types)

33 Reserved

34 NOBOOT No power-up boot on reset. Forces the processor into the No boot mode.
In this mode, the processor does not boot load, but begins fetching
instructions from 0x0090 0004 in internal memory.
(0 = disable, 1 = force No boot mode)

35 TMODE Test mode enable. The TMODE bit is for Analog Devices’ usage only. Do
NOT set this bit. (0 = normal operation)

36 BHO Buffer Hang Override. The BHO control bit overrides the Buffer Hang
Disable (BHD) bit, disabling BHD’s control over core access of data buffer
behavior.
(0 = normal BHD operation, 1 = override BHD operation)

37 MTST Memory Test Enable. Enables scanning of data for to the latches used for
memory test. (0 = normal operation, 1 = enable memory test)

38 ENBIOX Enable IOX address breakpoint

39 ENBIOY Enable IOY address breakpoint

1 Instruction address and program memory breakpoint negates have an effect latency of 4 core clock
cycles.

Table 6-3. Emulation Control Register (EMUCTL) Descriptions (Cont’d)

Bit Name Description

ADSP-2136x SHARC Processor Programming Reference 6-11

JTAG Test Emulation Port

Breakpoint Control Register (BRKCTL)
This BRKCTL register controls how breakpoints are used (if the UMODE bit is
set). This user-accessible register is located at address 0x30025.

The BRKCTL register is a 32-bit memory-mapped I/O register. The core can
write into this register and the bit information of this register is shown in
the processor specific ADSP-2136x SHARC Processor Hardware Reference.
The bits related to the breakpoint register are the same as in the EMUCTL
register.

Breakpoint Registers (PSx, DMx, IOx, and EPx)

The PSx, DMx, IOx, and EPx (breakpoint) registers are located in the I/O
processor register set. The emulation breakpoint registers are user-accessi-
ble if the UMODE bit is set in the BRKCTL register. Otherwise they can be
written only when the ADSP-2136x processor is in emulation space or test
mode. The breakpoint registers vary in size according to the address type:
instruction (24-bit address), data (32-bit address), or I/O data (19-bit
address).

The ADSP-2136x processor contains nine sets of emulation Breakpoint
registers. Each set consists of a start and end register which describe an
address range, with the start register setting the lower end of the address
range. Each breakpoint set monitors a particular address bus. When a
valid address is in the address range, then a breakpoint signal is generated.
The address range includes the start and end addresses.

The nine breakpoint sets are grouped into four types—instruction (IA),
DM data (DA), PM data (PA), and I/O data (I/O). The individual break-
point signals in each type are ORed together to create five composite
breakpoint signals.

These composite signals can be optionally ANDed or ORed together to
create the effective breakpoint event signal used to generate an emulator
interrupt. The ANDBKP bit in the EMUCTL register selects the function used.

JTAG Related Registers

6-12 ADSP-2136x SHARC Processor Programming Reference

Each breakpoint type has an enable bit in the EMUCTL register. When set,
these bits add the specified breakpoint type into the generation of the
effective breakpoint signal. If cleared, the specified breakpoint type is not
used in the generation of the effective breakpoint signal. This allows the
user to trigger the effective breakpoint from a subset of the breakpoint
types.

To provide further flexibility, each individual breakpoint can be pro-
grammed to trigger if the address is in range AND one of these conditions
is met: READ access, WRITE access, ANY access, or NO access. The con-
trol bits for this feature are also located in EMUCTL register. For more
information, see the PA1MODES bit description in Table 6-4.

The address ranges of the emulation breakpoint registers are negated by
setting the appropriate negation bits in the EMUCTL register. For more
information, see the NEGPA1 bit description in Table 6-3 on page 6-8.
Each breakpoint can be disabled by setting the start address larger than the
end address.

Four of the breakpoints monitor the instruction address, two monitor the
data memory address, one monitors the program memory data address,
and two monitor the I/O address bus.

The instruction address breakpoints monitor the address of the instruc-
tion being executed, not the address of the instruction being fetched. If
the current execution is aborted, the breakpoint signal does not occur even
if the address is in range. Data address breakpoints (DA and PA only) are
also ignored during aborted instructions. The nine breakpoint sets appear
in Table 6-4.

Table 6-4. PSx, DMx, IOx, and EPx (Breakpoint) Registers

Register Function Group1

PSA1S Instruction Address Start #1 IA

PSA1E Instruction Address End #1 IA

ADSP-2136x SHARC Processor Programming Reference 6-13

JTAG Test Emulation Port

Enhanced Emulation Status Register (EEMUSTAT)
The EEMUSTAT register acts as the breakpoint status register for the
ADSP-2136x processor. This register is a memory-mapped IOP register.
The processor core can access this register. For I/O breakpoints, this regis-
ter has two status bits, one each for the two I/O buses (IOX and IOY).

When a breakpoint is hit, a user interrupt is generated. The breakpoint
status can be checked by looking at the EEMUSTAT register. When the core
returns from interrupt, the breakpoint status bits are cleared.

PSA2S Instruction Address Start #2 IA

PSA2E Instruction Address End #2 IA

PSA3S Instruction Address Start #3 IA

PSA3E Instruction Address End #3 IA

PSA4S Instruction Address Start #4 IA

PSA4E Instruction Address End #4 IA

DMA1S Data Address Start #1 DA

DMA1E Data Address End #1 DA

DMA2S Data Address Start #2 DA

DMA2E Data Address End #2 DA

 PMDAS Program Data Address Start PA

PMDAE Program Data Address End PA

IOAS I/O Address Start I/O

IOAE I/O Address End I/O

EPAS External Port Address Start EP

1 Group IA = 24-bit addresses, Groups DA and PA = 32-bit addresses,
 Group I/O = 19-bit addresses.

Table 6-4. PSx, DMx, IOx, and EPx (Breakpoint) Registers (Cont’d)

Register Function Group1

JTAG Related Registers

6-14 ADSP-2136x SHARC Processor Programming Reference

EEMUIN Register
The EEMUIN register is a one-deep, 32-bit memory-mapped I/O buffer that
is readable by the core. This buffer is used by the background telemetry
channel to allow the emulator to pass data to the processor without inter-
rupting the core. When this buffer is full, a low priority emulator
interrupt is generated. This register’s address is 0x30020.

EEMUOUT Register
The EEMUOUT register is a four-deep memory, 32-bit memory-mapped I/O
buffer that is writable by the core. Its address is 0x30022.

Emulation Clock Counter Registers (EMUCLK,
EMUCLK2)

The EMUCLK (clock counter) and EMUCLK2 (clock counter scaling) registers
are located in the universal (Ureg) register set. EMUCLK and EMUCLK2 regis-
ters are user accessible and can be written only when the processor is in
emulation space. These registers are read-only from normal-space and can
be written only when the ADSP-2136x processor is in emulation space.
The emulation clock counter consists of a 32-bit count register (EMUCLK)
and a 32-bit scaling register (EMUCLK2). The EMUCLK register counts clock
cycles while the user has control of the processor and stops counting when
the emulator gains control. These registers let you gauge the amount of
time spent executing a particular section of code. The EMUCLK2 register
extends the time EMUCLK can count by incrementing each time the EMUCLK
value rolls over to zero. The combined emulation clock counter can count
accurately for thousands of hours.

When the emulator is connected to the processor and the processor is sin-
gle stepping, extra cycles are used by the emulator and this can make it
seem as though the instructions are taking more cycles then they should.

ADSP-2136x SHARC Processor Programming Reference 6-15

JTAG Test Emulation Port

You can see the actual cycle time of the processor (without the emulator)
by polling the EMUCLK and EMUCLK2 registers. The processor cycle count can
be seen while the core is in user space.

Boundary Register
The boundary-scan register is selected by the EXTEST, INTEST, and SAMPLE
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing. For the most recent BSDL
files, please visit the Analog Devices Web site.

EMUN Register
The EMUN (Nth event counter) register is located in the I/O processor reg-
ister set. The EMUN register can only be written to if the BRKCTL bit is set.
The Nth event counter allows an emulation breakpoint to occur on the
Nth occurrence of the breakpoint event. This is accomplished by writing
the desired Nth value to the EMUN register in UREG space. The counter dec-
rements on each occurrence of the breakpoint event, asserting the
interrupt when the counter is equal to zero and the hardware breakpoint
event occurs. For more information, see the ADSP-2136x SHARC Proces-
sor Hardware Reference for the ADSP-21362/3/4/5/6 Processors or the
ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors.

EMUIDLE Instruction
The EMUIDLE instruction places the ADSP-2136x processor in the idle
state and triggers an emulator interrupt. This operation uses the EMUIDLE
instruction as a software breakpoint. When the EMUIDLE instruction is exe-
cuted, the emulation clock counter immediately halts. For more
information, see the ADSP-2136x SHARC Processor Hardware Reference
for the ADSP-21362/3/4/5/6 Processors or the ADSP-2136x SHARC Proces-
sor Hardware Reference for the ADSP-21367/8/9 Processors.

JTAG Related Registers

6-16 ADSP-2136x SHARC Processor Programming Reference

Operating System Process ID Register (OSPID)
The OSPID register is a 32-bit memory-mapped I/O register that is sam-
pled into the shift register, EMUOSPID, whenever the program counter is
sampled into the EMUPC register. The EMUOSPID and EMUPC registers form a
single scan chain.

The OSPID feature is controlled using the (OSPIDEN, bit 1) in the enhanced
emulation control/status register. To enable this feature, set this bit = 1. If
not enabled (= 0), the legacy feature is supported.

The operation is explained in the following steps.

1. The new feature is enabled by setting the OSPIDEN bit in the
enhanced emulation control register. The enhanced emulation
enable bit need not be set to enable this feature.

2. Whenever the TAP controller returns to the RUNTEST state, the con-
tents of the program counter are sampled into the EMUPC register.
The OSPID register is also loaded into the EMUOSPID register.

3. Both the EMUPC and EMUOSPID registers can be selected by the same
JTAG instruction (instruction for the EMUPC register), since they
form a single scan chain.

4. The TAP controller sends the CAPTURE signal to both the register
and status bits of the EMUOSPID and EMUPC registers into shift
registers.

5. The TAP enters to the SHIFT state and shifts out 56-bit data. In
this case, the first 32 bits indicate program id, and the last 24 bits
provide the address of instruction executed in that program id.

ADSP-2136x SHARC Processor Programming Reference 6-17

JTAG Test Emulation Port

Private Instructions
Table 6-2 lists the private instructions that are reserved for emulation and
memory test. The ADSP-21364 EZ-KIT Lite emulator uses the TAP and
boundary scan as a way to access the processor in the target system. The
EZ-KIT emulator requires a target board connector for access to the TAP.

References
• IEEE Standard 1149.1-1990. Standard Test Access Port and

Boundary-Scan Architecture.

To order a copy, contact IEEE at 1-800-678-IEEE.

• Maunder, C.M. and R. Tulloss. Test Access Ports and Boundary
Scan Architectures.

IEEE Computer Society Press, 1991.

• Parker, Kenneth. The Boundary Scan Handbook.

Kluwer Academic Press, 1992.

• Bleeker, Harry, P. van den Eijnden, and F. de Jong. Bound-
ary-Scan Test—A Practical Approach.

Kluwer Academic Press, 1993.

• Hewlett-Packard Co. HP Boundary-Scan Tutorial and BSDL Ref-
erence Guide.

(HP part# E1017-90001) 1992.

References

6-18 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference 7-1

7 TIMER

In addition to the internal core timer, the ADSP-2136x processor contains
three identical 32-bit timers that can be used to interface with external
devices. Each timer can be individually configured in any of three modes:

• “Pulse Width Modulation Mode (PWM_OUT)” on page 7-9

• “Pulse Width Count and Capture Mode (WDTH_CAP)” on
page 7-12

• “External Event Watchdog Mode (EXT_CLK)” on page 7-14

Timer Architecture
Each timer has one dedicated bidirectional chip signal, TIMERx. The three
timer signals are connected to the 14 digital peripheral interface (DPI)
pins through the signal routing unit 2 (SRU2). The timer signal functions
as an output signal in PWM_OUT mode and as an input signal in WDTH_CAP
and EXT_CLK modes. To provide these functions, each timer has four,
32-bit registers. The registers for each timer are:

• Timer x control (TMxCTL) register

• Timer x word count (TMxCNT) register

• Timer x word period (TMxPRD) register

• Timer x word pulse width (TMxW) register

Timer Architecture

7-2 ADSP-2136x SHARC Processor Programming Reference

The timers also share a common status and control register—the timer
global status and control (TMSTAT) register.

For information on the timer registers, see “Timer Registers” on
page B-35.

Figure 7-1. Timer Block Diagram

U

SUB

PERIOD

COUNT

PULSEWIDTH

PERIOD BUFFER PULSEWIDTH BUFFER

32 (READ ONLY)

3232

–

EXPIRE

I/O MEMORY DATA BUS

+

ADSP-2136x SHARC Processor Programming Reference 7-3

Timer

When clocked internally, the clock source is the ADSP-2136x processor’s
peripheral clock (PCLK). The timer produces a waveform with a period
equal to 2 x TMxPRD and a width equal to 2 x TMxW. The period and width
are set through the TMxPRD[30:0] and the TMxW[30:0] bits. Bit 31 is
ignored for both. Assuming HCLK=166 MHz:

maximum period = 2 x (231 – 1) x 6 ns = 40 seconds.

Timer and Sequencing
The sequencer is attached to the programmable interval timer. Bits in the
MODE2, TCOUNT, and TPERIOD registers control timer operations as described
below.

• Timer enable MODE2 Bit 5 (TIMEN). This bit directs the processor to
enable (if 1) or disable (if 0) the timer.

• Timer count (TCOUNT). This register contains the decrementing
timer count value, counting down the cycles between timer
interrupts.

• Timer period (TPERIOD). This register contains the timer period,
indicating the number of cycles between timer interrupts.

Table B-3 on page B-11 lists all of the bits in the MODE2 register.

The TCOUNT register contains the timer counter. The timer decrements the
TCOUNT register during each clock cycle. When the TCOUNT value reaches
zero, the timer generates an interrupt and asserts the FLAGx pin. This sce-
nario applies only when FLAG3 is configured as TIMEXP. On the clock cycle
after TCOUNT reaches zero, the timer automatically reloads TCOUNT from the
TPERIOD register.

Timer and Sequencing

7-4 ADSP-2136x SHARC Processor Programming Reference

The TPERIOD value specifies the frequency of timer interrupts. The num-
ber of cycles between interrupts is TPERIOD + 1. The maximum value of
TPERIOD is 232 – 1. This value is loaded into TCOUNT after it decrements to
zero.

To start and stop the timer, programs use the MODE2 register’s TIMEN bit.
With the timer disabled (TIMEN=0), the program loads TCOUNT with an ini-
tial count value and loads TPERIOD with the number of cycles for the
desired interval. Then, the program enables the timer (TIMEN=1) to begin
the count.

When a program enables the timer, the timer starts decrementing the
TCOUNT register at the end of the next two clock cycles after the current
cycle. If the timer is subsequently disabled, the timer stops decrementing
TCOUNT one clock cycle after the current cycle as shown in Figure 7-2.

Figure 7-2. Timer Enable and Disable

CCLK

Set TIMEN

Timer ActiveTIMER

CCLK

Clear TIMEN
Timer Inactive

TIMER

in MODE2
ENABLE

in MODE2
DISABLE

TCOUNT=N TCOUNT=N TCOUNT=N TCOUNT=N–1

TCOUNT=M–1 TCOUNT=M–2 TCOUNT=M–2 TCOUNT=M–2

ADSP-2136x SHARC Processor Programming Reference 7-5

Timer

The timer expired event (TCOUNT decrements to zero) generates two inter-
rupts, TMZHI and TMZLI. For information on latching and masking these
interrupts to select timer expired priority, see “Latching Interrupts” on
page 3-76.

As with other interrupts, the sequencer needs a minimum of five cycles to
fetch and decode the first instruction of the timer expired service routine
before executing the routine.

See Table 3-39 on page 3-71, Table 3-40 on page 3-72, and Table 3-41
on page 3-72 for pipelined execution cycles for interrupt processing.

Programs can read and write the TPERIOD and TCOUNT registers by using
universal register transfers. Reading the registers does not effect the timer.
Note that an explicit write to TCOUNT takes priority over the sequencer’s
loading TCOUNT from TPERIOD and the timer’s decrementing of TCOUNT.
Also note that TCOUNT and TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.

Timer Status and Control
The timer global status and control (TMSTAT) register indicates the status of
all three timers using a single read. The TMSTAT register also contains timer
enable bits. Within TMSTAT, each timer has a pair of sticky status bits, that
require a write one-to-set (TIMxEN) or write one-to-clear (TIMxDIS) to
enable and disable the timer respectively.

Writing a one to both bits of a pair disables that timer.

Each timer also has an overflow error detection bit, TIMxOVF. When an
overflow error occurs, this bit is set in the TMSTAT register. A program must
write one-to-clear this bit.

See Table 7-1 for more information about bits in the TMSTAT register.

Timer Status and Control

7-6 ADSP-2136x SHARC Processor Programming Reference

After the timer has been enabled, its TIMxEN bit is set (= 1). The timer then
starts counting three peripheral clock cycles (PCLK) after the TIMxEN bit is
set. Setting (writing one to) the timer’s TIMxDIS bit stops the timer with-
out waiting for another event.

Table 7-1. Timer Global Status and Control (TMSTAT) Register Bits

Bit Name Description

0 TIM0IRQ Timer 0 Interrupt Latch Write one-to-clear (also an output)1

1 TIM1IRQ Timer 1 Interrupt Latch Write one-to-clear (also an output)1

2 TIM2IRQ Timer 2 Interrupt Latch Write one-to-clear (also an output)1

3 Reserved

4 TIM0OVF Timer 0 Overflow/Error Write one-to-clear (also an output)

5 TIM1OVF Timer 1 Overflow/Error Write one-to-clear (also an output)

6 TIM2OVF Timer 2 Overflow/Error Write one-to-clear (also an output)

7 Reserved

8 TIM0EN Timer 0 Enable Write one-to-enable Timer 0

9 TIM0DIS Timer 0 Disable Write one-to-disable Timer 0

10 TIM1EN Timer 1 Enable Write one-to-enable Timer 1

11 TIM1DIS Timer 1 Disable Write one-to-disable Timer 1

12 TIM2EN Timer 2 Enable Write one-to-enable Timer 2

13 TIM2DIS Timer 2 Disable Write one-to-disable Timer 2

31–14 Reserved

1 This bit is set to one when an interrupt generating event occurs. When the program writes a
one to this bit position, it clears the source event which causes this bit to clear. A subsequent
read of this bit returns a zero.

ADSP-2136x SHARC Processor Programming Reference 7-7

Timer

Timer Interrupts
Each timer generates a unique interrupt request signal. A common register
latches these interrupts so that a program can determine the interrupt
source without reference to the timer’s interrupt signal. The TMSTAT regis-
ter contains an interrupt latch bit (timxirq) and an overflow/error
indicator bit (TIMxOVF) for each timer.

The three timer interrupts are connected as follows:

• TIM0IRQ to GPTMR0I, bit 13 in the IRPTL register

• TIM1IRQ to GPTMR1I, bit 4 in the LIRPTL register

• TIM2IRQ to GPTMR2I, bit 8 in the LIRPTL register

These sticky bits are set by the timer hardware and may be watched by
software. They need to be cleared in the TMSTAT register by software explic-
itly. To clear, write a one to the corresponding bit in the TMSTAT register.

Interrupt and overflow bits may be cleared simultaneously with
timer enable or disable.

To enable a timer’s interrupt, set the IRQEN bit in the timer’s configuration
(TMxCTL) register and unmask the timer’s interrupt by setting the corre-
sponding bit of the IMASK register. With the IRQEN bit cleared, the timer
does not set its interrupt latch (TIMxIRQ) bits. To poll the TIMxIRQ bits
without generating a timer interrupt, programs can set the IRQEN bit while
leaving the timer’s interrupt masked.

With interrupts enabled, ensure that the interrupt service routine (ISR)
clears the TIMxIRQ latch before the RTI instruction to assure that the inter-
rupt is not serviced erroneously. In external clock (EXT_CLK) mode, the
latch should be reset at the very beginning of the interrupt routine so as
not to miss any timer event.

Enabling a Timer

7-8 ADSP-2136x SHARC Processor Programming Reference

Enabling a Timer
To enable an individual timer, set the timer’s TIMxEN bit in the TMSTAT reg-
ister. To disable an individual timer, set the timer’s TIMxDIS bit in the
TMSTAT register. To enable all three timers in parallel, set all the TIMxEN
bits in the TMSTAT register.

Before enabling a timer, always program the corresponding timer’s config-
uration (TMxCTL) register. This register defines the timer’s operating mode,
the polarity of the TIMERx signal, and the timer’s interrupt behavior. Do
not alter the operating mode while the timer is running. For more infor-
mation on the TMxCTL register, see “Timer Configuration Registers
(TMxCTL)” on page B-35.

The timer enable and disable timing for PWM_OUT appears in Figure 7-3.

Figure 7-3. Timer PWM Enable and Disable Timing

CCLK

PWMOUT

CCLK

TCOUNT
=M

TCOUNT
=M+1

TCOUNT
=M+1

TCOUNT
=M+1

TIMER ENABLE
SET

TIMEN
TIMER

ENABLED

TMxPRD = 0X2
TMxW = 0X1

TCOUNT
=XX

TCOUNT
=XX

TCOUNT
=1

TCOUNT
=2

TCOUNT
=4

TCOUNT
=3

TIMER
DISABLED

TIMER DISABLE
SET

TIMDIS

PCLK

TCOUNT
=XX

TCOUNT
=M+1

ADSP-2136x SHARC Processor Programming Reference 7-9

Timer

When the timer is enabled, the count register is loaded according to the
operation mode specified in the TMxCTL register. When the timer is dis-
abled, the counter registers retain their state; when the timer is re-enabled,
the counter is reinitialized based on the operating mode. The software
should never write the counter value directly.

Any of the timers can be used to implement a watchdog functionality that
can be controlled by either an internal or an external clock source.

For software to service the watchdog, the program must reset the timer
value by disabling and then re-enabling the timer. Servicing the watchdog
periodically prevents the count register from reaching the period value and
prevents the timer interrupt from being generated. When the timer
reaches the period value and generates the interrupt, reset the processor
within the corresponding watchdog’s ISR.

Pulse Width Modulation Mode (PWM_OUT)
In PWM_OUT mode, the timer supports on-the-fly updates of period and
width values of the PWM waveform. The period and width values can be
updated once every PWM waveform cycle, either within or across PWM
cycle boundaries.

To enable PWM_OUT mode, set the TIMODE1–0 bits to 01 in the timer’s Con-
figuration (TMxCTL) register. This configures the timer’s TIMERx signal as
an output with its polarity determined by PULSE as follows:

• If PULSE is set (= 1), an active high width pulse waveform is gener-
ated at the TIMERx signal.

• If PULSE is cleared (= 0), an active low width pulse waveform is gen-
erated at the TIMERx signal.

The timer is actively driven as long as the TIMODE field remains 01.

Enabling a Timer

7-10 ADSP-2136x SHARC Processor Programming Reference

Figure 7-4 shows a flow diagram for PWM_OUT mode. When the timer
becomes enabled, the timer checks the period and width values for plausi-
bility (independent of the value set with the PRDCNT bit) and does not start
to count when any of the following conditions are true:

• Width is equal to zero

• Period value is lower than width value

• Width is equal to period

Figure 7-4. Timer Flow Diagram – PWM_OUT Mode

DATA BUS

RESET

TIMER_ENABLE

TMxPRD TMxW

CLOCK

YES

INTERRUPT

HIGH

LOW

TMRX

EQUAL?

TMxCNT

YES

PWMOUT
LOGIC

EQUAL?

SET PWMOUT

ADSP-2136x SHARC Processor Programming Reference 7-11

Timer

On invalid conditions, the timer sets both the TIMxOVF and the TIMIRQx
bits and the Count register is not altered. Note that after reset, the timer
registers are all zero.

As mentioned earlier, 2 x TMxPRD is the period of the PWM waveform and
2 x TMxW is the width. If the period and width values are valid after the
timer is enabled, the Count register is loaded with the value resulting from
0xFFFF FFFF – width. The timer counts upward to 0xFFFF FFFF.
Instead of incrementing to 0xFFFF FFFF, the timer then reloads the
counter with the value derived from 0xFFFF FFFF – (period – width) and
repeats.

PWM Waveform Generation

If the PRDCNT bit is set, the internally-clocked timer generates rectangular
signals with well-defined period and duty cycles. This mode also generates
periodic interrupts for real-time processing.

The 32-bit period (TMxPRD) and width (TMxW) registers are programmed
with the values of the timer count period and pulse width modulated out-
put pulse width.

When the timer is enabled in this mode, the TIMERx signal is pulled to a
deasserted state each time the pulse width expires, and the signal is
asserted again when the period expires (or when the timer is started).

To control the assertion sense of the TIMERx signal, the PULSE bit in the
corresponding TMxCTL register is either cleared (causes a low assertion
level) or set (causes a high assertion level).

When enabled, a timer interrupt is generated at the end of each period. An
ISR must clear the interrupt latch bit TIMxIRQ and might alter period
and/or width values. In pulse width modulation applications, the software
needs to update the period and pulse width values while the timer is
running.

Enabling a Timer

7-12 ADSP-2136x SHARC Processor Programming Reference

When a program updates the timer configuration, the TMxW register must
always be written to last, even if it is necessary to update only one of the
registers. When the TMxW value is not subject to change, the ISR reads the
current value of the TMxW register and rewrite it again. On the next counter
reload, all of the timer control registers are read by the timer.

To generate the maximum frequency on the TIMERx output signal, set the
period value to two and the pulse width to one. This makes the TIMERx
signal toggle every four CCLK or 2 PCLK (peripheral clock period = 2 x CCLK)
clock cycles as shown in Figure 7-3.

Single-Pulse Generation

If the PRDCNT bit is cleared, the PWM_OUT mode generates a single pulse on
the TIMERx signal. This mode can also be used to implement a well defined
software delay that is often required by state machines. The pulse width
(= 2 x TMxW) is defined by the width register and the period register is not
used.

At the end of the pulse, the interrupt latch bit (TIMxIRQ) is set and the
timer is stopped automatically. If the PULSE bit is set, an active high pulse
is generated on the TIMERx signal. If the PULSE bit is not set, the pulse is
active low.

Pulse Width Count and Capture Mode (WDTH_CAP)
To enable WDTH_CAP mode, set the TIMODE1–0 bits in the TMxCTL register to
10. This configures the TIMERx signal as an input signal with its polarity
determined by PULSE. If PULSE is set (= 1), an active high width pulse
waveform is measured at the TIMERx signal. If PULSE is cleared (= 0), an
active low width pulse waveform is measured at the TIMERx signal. The
internally-clocked timer is used to determine the period and pulse width
of externally-applied rectangular waveforms. The period and width regis-
ters are read-only in WDTH_CAP mode. The period and pulse width
measurements are with respect to a clock frequency of CCLK/4 or PCLK/2.

ADSP-2136x SHARC Processor Programming Reference 7-13

Timer

Figure 7-5 shows a flow diagram for WDTH_CAP mode. In this mode, the
timer resets words of the count in the TMxCNT register value to
0x0000 0000 and does not start counting until it detects the leading edge
on the TIMERx signal.

When the timer detects a first leading edge, it starts incrementing. When
it detects the trailing edge of a waveform, the timer captures the current
value of the count register (= TMxCNT/2) and transfers it into the TMxW
width registers. At the next leading edge, the timer transfers the current
value of the count register (= TMxCNT/2) into the TMxPRD period register.
The count registers are reset to 0x0000 0000 again, and the timer contin-
ues counting until it is either disabled or the count value reaches
0xFFFF FFFF.

Figure 7-5. Timer Flow Diagram – WDTH_CAP Mode

DATA BUS

RESET

SET
TMxOVF

BIT

TMxPRD TMxW

CLOCK

INTERRUPT

PRDCNT

TMRx

TMxCNT

1

LEADING
EDGE

DETECT

TMxOVF

TMRx
TRAILING

EDGE
DETECT

INTERRUPT
LOGIC

1

2

2

Enabling a Timer

7-14 ADSP-2136x SHARC Processor Programming Reference

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of the leading edge and
trailing edge of the TIMERx signal, the PULSE bit in the TMxCTL register is set
or cleared. If the PULSE bit is cleared, the measurement is initiated by a
falling edge, the count register is captured to the Width register on the ris-
ing edge, and the period register is captured on the next falling edge.

The PRDCNT bit in the TMxCTL register controls whether an enabled inter-
rupt is generated when the pulse width or pulse period is captured. If the
PRDCNT bit is set, the interrupt latch bit (TIMxIRQ) gets set when the pulse
period value is captured. If the PRDCNT bit is cleared, the TIMxIRQ bit gets
set when the pulse width value is captured.

If the PRDCNT bit is cleared, the first period value has not yet been mea-
sured when the first interrupt is generated. Therefore, the period value is
not valid. If the interrupt service routine reads the period value anyway,
the timer returns a period value of zero. When the period expires, the
period value is loaded in the TMxPRD register.

A timer interrupt (if enabled) is also generated if the count register reaches
a value of 0xFFFF FFFF. At that point, the timer is disabled automati-
cally, and the TIMxOVF Status bit is set, indicating a count overflow. The
TIMxIRQ and TIMxOVF bits are sticky bits, and software must explicitly clear
them.

The first width value captured in WDTH_CAP mode is erroneous due to syn-
chronizer latency. To avoid this error, software must issue two NOP
instructions between setting WDTH_CAP mode and setting TIMxEN.

External Event Watchdog Mode (EXT_CLK)
To enable EXT_CLK mode, set the TIMODE1–0 bits in the TMxCTL register to
11 in the TMxCTL register. This configures the TIMERx signal as an input.
The PULSE bit determines the TIMERx signal polarity. The timer works as a

ADSP-2136x SHARC Processor Programming Reference 7-15

Timer

counter clocked by any external source, which can also be asynchronous to
the processor clock. Therefore, in EXT_CLK mode, the TMxCNT register
should not be read when the counter is running.

The operation of the EXT_CLK mode is as follows:

1. Program the TMxPRD period register with the value of the maximum
timer external count.

2. Set the TIMxEN bits. This loads the period value in the count regis-
ter and starts the countdown.

3. When the period expires, an interrupt, (TIMxIRQ) occurs.

After the timer is enabled, it waits for the first rising edge on the TIMERx
signal. The PULSE bit defines the rising edge and trailing edge. The rising
edge forces the count register to be loaded by the value (0xFFFF FFFF –
TMxPRD). Every subsequent rising edge increments the count register. After
reaching the count value 0xFFFF FFFE, the TIMxIRQ bit is set and an
interrupt is generated. The next rising edge reloads the count register with
(0xFFFF FFFF – TMxPRD) again.

The configuration bit, PRDCNT, has no effect in this mode. Also, TIMxOVF is
never set and the width register is unused.

Timer Programming Examples
This section provides two programming examples written for the
ADSP-2136x processors.

The first listing, Listing 7-1, sets up timer 0 in external watchdog mode,
using DAI pin 1 as its input. The timer generates an interrupt when it
senses the number of edges are equal to the timer period setting. The sec-
ond listing, Listing 7-2, uses both timer 0 and timer 1. Timer 0 is set up

Timer Programming Examples

7-16 ADSP-2136x SHARC Processor Programming Reference

in PWMOUT mode, using DAI pin 1 as its output. Timer 1 is set up in
width capture mode, using Timer 0 as its input. The period and pulse
width measured by timer 1 are identical to the settings of timer 0.

Listing 7-1. External Watchdog Mode Example

/* Register Definitions */

#define TMSTAT (0x1400) /* GP Timer 0 Status register */

#define TM0CTL (0x1401) /* GP Timer 0 Control register */

#define TM0PRD (0x1403) /* GP Timer 0 Period register */

#define TM0W (0x1404) /* GP Timer 0 Width register */

#define SRU_EXT_MISCB (0x2471)

/* SRU definitions */

#define DAI_PB01_O 0x00

/* Bit Positions */

#define TIMER0_I 0

/* Bit Definitions */

#define TIMODEEXT 0x00000003

#define PULSE 0x00000004

#define PRDCNT 0x00000008

#define IRQEN 0x00000010

#define TIM0EN 0x00000100

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* Route Timer 0 Input to DAI Pin 1 via SRU */

ADSP-2136x SHARC Processor Programming Reference 7-17

Timer

r0 = (DAI_PB01_O<<TIMER0_I);

dm(SRU_EXT_MISCB)=r0;

ustat3 = TIMODEEXT| /* External Watchdog Mode */

 PULSE| /* Positive edge is active */
 IRQEN| /* Enable Timer 0 interrupt */
 PRDCNT; /* Count to end of period */

dm(TM0CTL) = ustat3;

R0 = 0xff;

dm(TM0PRD) = R0; /* Timer 0 period = 255 */

/* An interrupt is generated when the Timer senses end of the

selected period, In this example Interrupts are disabled, so pro-

gram flow will not be affected */

R0 = TIM0EN; /* Enable timer 0 */

dm(TMSTAT) = R0;

_main.end: jump (pc,0); /* endless loop */

Listing 7-2. PWMOUT and Width Capture Mode Example

/* Register Definitions */

#define TMSTAT (0x1400) /* GP Timer 0 Status register */

#define TM0CTL (0x1401) /* GP Timer 0 Control register */

#define TM0CNT (0x1402) /* GP Timer 0 Count register */

#define TM0PRD (0x1403) /* GP Timer 0 Period register */

#define TM0W (0x1404) /* GP Timer 0 Width register */

#define TM1CTL (0x1409) /* GP Timer 1 Control register */

#define TM1CNT (0x140A) /* GP Timer 1 Count register */

#define TM1PRD (0x140B) /* GP Timer 1 Period register */

#define TM1W (0x140C) /* GP Timer 1 Width register */

#define SRU_PIN0 (0x2460)

#define SRU_PBEN0 (0x2478)

#define SRU_EXT_MISCB (0x2471)

Timer Programming Examples

7-18 ADSP-2136x SHARC Processor Programming Reference

/* Bit Definitions */

#define TIMODEPWM 0x00000001

#define TIMODEW 0x00000002

#define PULSE 0x00000004

#define PRDCNT 0x00000008

#define IRQEN 0x00000010

#define TIM0EN 0x00000100

#define TIM1EN 0x00000400

#define GPTMR1I 0x00000010

/* SRU Definitions */

#define TIMER0_Od 0x2C

#define TIMER0_Oe 0x14

#define PBEN_HIGH_Of 0x01

/* Bit positions */

#define TIMER1_I 5

/* Main code section */

.global _main;

.section/pm seg_pmco;

_main:

/* Set up and enable Timer 0 in PWM Out mode*/

/* Route Timer 0 Output to DAI Pin 1 via SRU */

r0 = TIMER0_Od;dm(SRU_PIN0) = r0;

/* Enable DAI pin 1 as an output */

r0 = PBEN_HIGH_Of;

dm(SRU_PBEN0) = r0;

ustat3 = TIMODEPWM| /* PWM Out Mode */

 PULSE| /* Positive edge is active */

 PRDCNT; /* Count to end of period */

dm(TM0CTL) = ustat3;

ADSP-2136x SHARC Processor Programming Reference 7-19

Timer

R0 = 0xFF;

dm(TM0PRD) = R0; /* Timer 0 period = 255 */

R1 = 0x3F;

dm(TM0W) = R1; /* Timer 0 Pulse width = 15 */

R0 = TIM0EN; /* enable timer 0 */

dm(TMSTAT) = R0;

/* --------------End of Timer 0 Setup-------------------- */

/* Set up and enable Timer 1 in Width Capture mode */

/* Use the output of Timer 0 as the input to Timer 1 */

/* Route Timer 0 Output to Timer 1 Input via SRU */

r0=(TIMER0_Oe<<TIMER1_I);

dm(SRU_EXT_MISCB)=r0;

ustat3 = TIMODEW| /* Width Capture mode */

 PULSE| /* Positive edge is active */

 IRQEN| /* Enable Timer 1 Interrupt */

 PRDCNT; /* Count to end of period */

dm(TM1CTL) = ustat3;

R0 = TIM1EN; /* enable timer 1 */

dm(TMSTAT) = R0;

/* Poll the Timer 1 interrupt latch, the interrupt will latch

when the measured period and pulse width are ready to read */

bit tst LIRPTL GPTMR1I;

if not tf jump(pc,-1);

Timer Programming Examples

7-20 ADSP-2136x SHARC Processor Programming Reference

/* Read the measured values */

r0 = dm(TM1PRD);

r1 = dm(TM1W);

/* r0 and r1 will match the Timer 0 settings above */

_main.end: jump (pc,0);

ADSP-2136x SHARC Processor Programming Reference 8-1

8 INSTRUCTION SET

The compute and move instructions in the Group I set of instructions
specify a compute operation in parallel with one or two data moves or an
index register modify.

Group I Instructions
The instructions in this group contain a COMPUTE field that specifies a
compute operation using the ALU, multiplier, or shifter. Because there are
a large number of options available for computations, these operations are
described separately in “Computations Reference” in Chapter 9, Compu-
tations Reference. Note that data moves between the MR registers and the
register file are considered multiplier operations and are also covered in
“Computations Reference” in Chapter 9, Computations Reference.
Group I instructions include the following.

• “Type 1: Compute, Dreg«···»DM | Dreg«···»PM” on page 8-3

Parallel data memory and program memory transfers with register
file, optional compute operation

• “Type 2: Compute” on page 8-6

Compute operation, optional condition

• “Type 3: Compute, ureg«···»DM | PM, register modify” on
page 8-8

Transfer between data or program memory and universal register,
optional condition, optional compute operation

Group I Instructions

8-2 ADSP-2136x SHARC Processor Programming Reference

• “Type 4: Compute, dreg«···»DM | PM, data modify” on page 8-13

PC-relative transfer between data or program memory and register
file, optional condition, optional compute operation

• “Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg” on page 8-18

Transfer between two universal registers, optional condition,
optional compute operation

• “Type 6: Immediate Shift, dreg«···»DM | PM” on page 8-22

Immediate shift operation, optional condition, optional transfer
between data or program memory and register file

• “Type 7: Compute, modify” on page 8-27

Index register modify, optional condition, optional compute
operation

ADSP-2136x SHARC Processor Programming Reference 8-3

Instruction Set

Type 1: Compute, Dreg«···»DM | Dreg«···»PM

Parallel data memory and program memory transfers with register file,
option compute operation

Syntax

Function (SISD)

In SISD mode, the Type 1 instruction provides parallel accesses to data
and program memory from the register file. The specified I registers
address data and program memory. The I values are post-modified and
updated by the specified M registers. Pre-modify offset addressing is not
supported. For more information on register restrictions, see “Data
Address Generators” in Chapter 4, Data Address Generators.

Function (SIMD)

In SIMD mode, the Type 1 instruction provides the same parallel accesses
to data and program memory from the register file as are available in SISD
mode, but provides these operations simultaneously for the X and Y pro-
cessing elements.

The X element uses the specified I registers to address data and program
memory, and the Y element adds one to the specified I registers to address
data and program memory. If the broadcast read bits—BDCST1 (for I1) or
BDCST9 (for I9)—are set, the Y element uses the specified I register with-
out adding one.

The I values are post-modified and updated by the specified M registers.
Pre-modify offset addressing is not supported. For more information on
register restrictions, see “Data Address Generators” in Chapter 4, Data
Address Generators.

compute , DM(Ia, Mb) = dreg1 , PM(Ic, Md) = dreg2 ;

, dreg1 = DM(Ia, Mb) , dreg2 = PM(Ic, Md)

Type 1: Compute, Dreg«···»DM | Dreg«···»PM

8-4 ADSP-2136x SHARC Processor Programming Reference

The X element uses the specified Dreg registers, and the Y element uses the
complementary registers (Cdreg) that correspond to the Dreg registers. For
a list of complementary registers, see Table 2-16 on page 2-47.

The following pseudo code compares the Type 1 instruction’s explicit and
implicit operations in SIMD mode.

Examples

R7=BSET R6 BY R0, DM(I0,M3)=R5, PM(I11,M15)=R4;

R8=DM(I4,M1), PM(I12 M12)=R0;

When the processor is in SISD mode, the first instruction in this example
performs a computation along with two memory writes. DAG1 is used to
write to DM and DAG2 is used to write to PM. In the second instruction,
a read from data memory to register R8 and a write to program memory
from register R0 are performed.

When the ADSP-2136x processor is in SIMD mode, the first instruction
in this example performs the same computation and performs two writes
in parallel on both PEx and PEy. The R7 register on PEx and S7 on PEy
both store the results of the Bset computations. Also, simultaneous dual
memory writes occur with DM and PM, writing in values from R5, S5

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

compute , DM(Ia, Mb) = dreg1 , PM(Ic, Md) = dreg2 ;

, dreg1 = DM(Ia, Mb) , dreg2 = PM(Ic, Md)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

compute , DM(Ia+1, 0) = cdreg1 , PM(Ic+1, 0) = cdreg2 ;

, cdreg1 = DM(Ia+1, 0) , cdreg2 = PM(Ic+1, 0)

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-5

Instruction Set

(DM) and R4, S4 (PM) respectively. In the second instruction, values are
simultaneously read from data memory to registers R8 and S8 and written
to program memory from registers R0 and S0.

R0=DM(I1,M1);

When the processor is in broadcast mode (the BDCST1 bit is set in the
MODE1 system register), the R0 (PEx) data register in this example is loaded
with the value from data memory utilizing the I1 register from DAG1,
and S0 (PEy) is loaded with the same value.

Type 1 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

001
D
M
D

DMI DMM
P
M
D

DM DREG PMI PMM PM DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

DMD, PMD Select the access types (read or write)

DM DREG,
PM DREG

Specify register file location

DMI, PMI Specify I registers for data and program memory

DMM, PMM Specify M registers used to update the I registers

COMPUTE Defines a compute operation to be performed in parallel with the data accesses; if
omitted, this is a NOP

Type 2: Compute

8-6 ADSP-2136x SHARC Processor Programming Reference

Type 2: Compute

Compute operation, optional condition

Syntax

Function (SISD)

In SISD mode, the Type 2 instruction provides a conditional compute
instruction. The instruction is executed if the specified condition tests
true.

Function (SIMD)

In SIMD mode, the Type 2 instruction provides the same conditional
compute instruction as is available in SISD mode, but provides the opera-
tion simultaneously for the X and Y processing elements. The instruction
is executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

The following pseudo code compares the Type 2 instruction’s explicit and
implicit operations in SIMD mode.

IF COND compute ;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute ;

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-7

Instruction Set

Examples

IF MV R6=SAT MRF (UI);

When the ADSP-2136x processor is in SISD, the condition is evaluated in
the PEx processing element. If the condition is true, the computation is
performed and the result is stored in register R6.

When the processor is in SIMD mode, the condition is evaluated on each
processing element, PEx and PEy, independently. The computation exe-
cutes on both PEs, either one PE, or neither PE dependent on the
outcome of the condition. If the condition is true in PEx, the computa-
tion is performed and the result is stored in register R6. If the condition is
true in PEy, the computation is performed and the result is stored in regis-
ter S6.

Type 2 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00001 COND

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Selects whether the operation specified in the COMPUTE field is executed. If the
COND is true, the compute is executed. If no condition is specified, COND is
TRUE condition, and the compute is executed.

Type 3: Compute, ureg«···»DM | PM, register modify

8-8 ADSP-2136x SHARC Processor Programming Reference

Type 3: Compute, ureg«···»DM | PM, register modify

Transfer operation between data or program memory and universal regis-
ter, optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 3 instruction provides access between data or
program memory and a universal register. The specified I register
addresses data or program memory. The I value is either pre-modified (M,
I order) or post-modified (I, M order) by the specified M register. If it is
post-modified, the I register is updated with the modified value. If a com-
pute operation is specified, it is performed in parallel with the data access.
The optional (LW) in this syntax lets programs specify long word address-
ing, overriding default addressing from the memory map. If a condition is
specified, it affects the entire instruction. Note that the Ureg may not be
from the same DAG (that is, DAG1 or DAG2) as Ia/Mb or Ic/Md. For
more information on register restrictions, see “Data Address Generators”
in Chapter 4, Data Address Generators.

IF COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

ADSP-2136x SHARC Processor Programming Reference 8-9

Instruction Set

Function (SIMD)

In SIMD mode, the Type 3 instruction provides the same access between
data or program memory and a universal register as is available in SISD
mode, but provides this operation simultaneously for the X and Y process-
ing elements.

The X element uses the specified I register to address data or program
memory. The I value is either pre-modified (M, I order) or post-modified
(I, M order) by the specified M register. The Y element adds one to the
specified I register (before pre-modify or post-modify) to address data or
program memory. If the broadcast read bits—BDCST1 (for I1) or BDCST9
(for I9)—are set, the Y element uses the specified I and M registers with-
out adding one. If the I value post-modified, the I register is updated with
the modified value from the specified M register. The optional (LW) in
this syntax lets programs specify long word addressing, overriding default
addressing from the memory map.

For the universal register, the X element uses the specified Ureg register,
and the Y element uses the corresponding complementary register (Cureg).
For a list of complementary registers, see Table A-10 on page A-25. Note
that the Ureg may not be from the same DAG (DAG1 or DAG2) as Ia/Mb
or Ic/Md.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the data access. If a condi-
tion is specified, it affects the entire instruction. The instruction is
executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

Type 3: Compute, ureg«···»DM | PM, register modify

8-10 ADSP-2136x SHARC Processor Programming Reference

The following pseudo code compares the Type 3 instruction’s explicit and
implicit operations in SIMD mode.

Examples

R6=R3-R11, DM(I0,M1)=ASTATx;

IF NOT SV F8=CLIP F2 BY F14, F7=PM(I12,M12);

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute , DM(Ia+1, 0) = cureg (LW);

, PM(Ic+1, 0)

, DM(Mb+1, Ia) = cureg (LW);

, PM(Md+1, Ic)

, cureg = DM(Ia+1, 0) (LW);

PM(Ic+, 0) (LW);

, cureg = DM(Mb+1, Ia) (LW);

PM(Md+1, Ic) (LW);

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-11

Instruction Set

When the processor is in SISD mode, the computation and a data mem-
ory write in the first instruction are performed in PEx. The second
instruction stores the result of the computation in F8, and the result of the
program memory read into F7 if the condition’s outcome is true.

When the ADSP-2136x processor is in SIMD, the result of the computa-
tion in PEx in the first instruction is stored in R6, and the result of the
parallel computation in PEy is stored in S6. In addition, there is a simulta-
neous data memory write of the values stored in ASTATx and ASTATy. The
condition is evaluated on each processing element, PEx and PEy, indepen-
dently. The computation executes on both PEs, either one PE, or neither
PE, dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, the result is stored in register F8 and
the result of the program memory read is stored in F7. If the condition is
true in PEy, the computation is performed, the result is stored in register
SF8, and the result of the program memory read is stored in SF7.

IF NOT SV F8=CLIP F2 BY F14, F7=PM(I9,M12);

When the ADSP-2136x processor is in broadcast mode (the BDCST9 bit is
set in the MODE1 system register) and the condition tests true, the computa-
tion is performed and the result is stored in register F8. Also, the result of
the program memory read via the I9 register from DAG2 is stored in F7.
The SF7 register is loaded with the same value from program memory as
F7.

Type 3: Compute, ureg«···»DM | PM, register modify

8-12 ADSP-2136x SHARC Processor Programming Reference

Type 3 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

010 U I M COND G D L UREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

D Selects the access Type (read or write)

G Selects data memory or program memory

L Forces a long word (LW) access when address is in normal word address range

UREG Specifies the universal register

I Specifies the I register

M Specifies the M register

U Selects either update (post-modify) or no update (pre-modify)

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

ADSP-2136x SHARC Processor Programming Reference 8-13

Instruction Set

Type 4: Compute, dreg«···»DM | PM, data modify

PC-relative transfer between data or program memory and register file,
optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 4 instruction provides access between data or
program memory and the register file. The specified I register addresses
data or program memory. The I value is either pre-modified (data order, I)
or post-modified (I, data order) by the specified immediate data. If it is
post-modified, the I register is updated with the modified value. If a com-
pute operation is specified, it is performed in parallel with the data access.
If a condition is specified, it affects the entire instruction. For more infor-
mation on register restrictions, see “Data Address Generators” in
Chapter 4, Data Address Generators.

IF COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

Type 4: Compute, dreg«···»DM | PM, data modify

8-14 ADSP-2136x SHARC Processor Programming Reference

Function (SIMD)

In SIMD mode, the Type 4 instruction provides the same access between
data or program memory and the register file as is available in SISD mode,
but provides the operation simultaneously for the X and Y processing
elements.

The X element uses the specified I register to address data or program
memory. The I value is either pre-modified (data, I order) or post-modi-
fied (I, data order) by the specified immediate data. The Y element adds
one to the specified I register (before pre-modify or post-modify) to
address data or program memory. If the broadcast read bits—BDCST1 (for
I1) or BDCST9 (for I9)—are set, the Y element uses the specified I and M
registers without adding one. If the I value post-modified, the I register is
updated with the modified value from the specified M register. The
optional (LW) in this syntax lets programs specify long word addressing,
overriding default addressing from the memory map.

For the data register, the X element uses the specified Dreg register, and
the Y element uses the corresponding complementary register (Cdreg). For
a list of complementary registers, see Table A-10 on page A-25.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the data access. If a condi-
tion is specified, it affects the entire instruction, not just the
computation. The instruction is executed in a processing element if the
specified condition tests true in that element independent of the condi-
tion result for the other element.

ADSP-2136x SHARC Processor Programming Reference 8-15

Instruction Set

The following pseudo code compares the Type 4 instruction’s explicit and
implicit operations in SIMD mode.

Examples

IF FLAG0_IN F1=F5*F12, F11=PM(I10,6);

R12=R3 AND R1, DM(6,I1)=R6;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute , DM(Ia+1, 0) = cdreg ;

, PM(Ic+1, 0)

, DM(<data6>+1, Ia) = cdreg ;

, PM(<data6>+1, Ic)

, cdreg = DM(Ia+1, 0) ;

PM(Ic+1, 0) ;

, cdreg = DM(<data6>+1, Ia) ;

PM(<data6>+1, Ic) ;

Do not use the pseudo code above as instruction syntax.

Type 4: Compute, dreg«···»DM | PM, data modify

8-16 ADSP-2136x SHARC Processor Programming Reference

When the processor is in SISD mode, the computation and program
memory read in the first instruction are performed in PEx if the condi-
tion’s outcome is true. The second instruction stores the result of the
logical AND in R12 and writes the value within R6 into data memory.

When the processor is in SIMD mode, the condition is evaluated on each
processing element, PEx and PEy, independently. The computation and
program memory read execute on both PEs, either one PE, or neither PE
dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, and the result is stored in register F1,
and the program memory value is read into register F11. If the condition is
true in PEy, the computation is performed, the result is stored in register
SF1, and the program memory value is read into register SF11.

If FLAG0_IN F1=F5*F12, F11=PM(I9,3);

When the ADSP-2136x processor is in broadcast mode (the BDCST9 bit is
set in the MODE1 system register) and the condition tests true, the computa-
tion is performed, the result is stored in register F1, and the program
memory value is read into register F11 via the I9 register from DAG2. The
SF11 register is also loaded with the same value from program memory as
F11.

 Type 4 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 0 I G D U COND DATA DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

ADSP-2136x SHARC Processor Programming Reference 8-17

Instruction Set

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

D Selects the access Type (read or write)

G Selects data memory or program memory

DREG Specifies the register file location

I Specifies the I register

DATA Specifies a 6-bit, twos-complement modify value

U Selects either pre-modify without update or post-modify with update

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg

8-18 ADSP-2136x SHARC Processor Programming Reference

Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg

Transfer between two universal registers or swap between a data register in
each processing element, optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 5 instruction provides transfer (=) from one uni-
versal register to another or provides a swap (<->) between a data register
in the X processing element and a data register in the Y processing ele-
ment. If a compute operation is specified, it is performed in parallel with
the data access. If a condition is specified, it affects the entire instruction.

Function (SIMD)

In SIMD mode, the Type 5 instruction provides the same transfer (=)
from one register to another as is available in SISD mode, but provides
this operation simultaneously for the X and Y processing elements. The
swap (<->) operation does the same operation in SISD and SIMD modes;
no extra swap operation occurs in SIMD mode.

In the transfer (=), the X element transfers between the universal registers
Ureg1 and Ureg2, and the Y element transfers between the complementary
universal registers Cureg1 and Cureg2. For a list of complementary regis-
ters, see Table A-10 on page A-25.

IF COND compute, ureg1 = ureg2 ;

X dreg <-> Y dreg

ADSP-2136x SHARC Processor Programming Reference 8-19

Instruction Set

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the transfer. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The following pseudo code compares the Type 5 instruction’s explicit and
implicit operations in SIMD mode.

Examples

IF TF MRF=R2*R6(SSFR), M4=R0;

LCNTR=L7;

R0 <-> S1;

When the ADSP-2136x processor is in SISD mode, the condition in the
first instruction is evaluated in the PEx processing element. If the condi-
tion is true, MRF is loaded with the result of the computation and a register
transfer occurs between R0 and M4. The second instruction initializes the
loop counter independent of the outcome of the first instruction’s condi-
tion. The third instruction swaps the register contents between R0 and S1.

When the ADSP-2136x processor is in SIMD mode, the condition is eval-
uated on each processing element, PEx and PEy, independently. The
computation executes on both PEs, either one PE, or neither PE

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute, ureg1 = ureg2 ;

X dreg <-> Y dreg

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute, cureg1 = cureg2 ;

{no implicit operation}

Do not use the pseudo code above as instruction syntax.

Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg

8-20 ADSP-2136x SHARC Processor Programming Reference

dependent on the outcome of the condition. For the register transfer to
complete, the condition must be satisfied in both PEx and PEy. The sec-
ond instruction initializes the loop counter independent of the outcome of
the first instruction’s condition. The third instruction swaps the register
contents between R0 and S1—the SISD and SIMD swap operation is the
same.

Type 5 Opcode (Ureg = Ureg transfer)

Type 5 Opcode (X Dreg <-> Y Dreg swap)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 1 0 SRC UREG COND SU DEST UREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 1 1 Y DREG COND X DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

ADSP-2136x SHARC Processor Programming Reference 8-21

Instruction Set

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

SRC UREG Identifies the universal register source, (highest 5 bits of register code)

SU Identifies the universal register source, (lowest 2 bits of register code)

DEST UREG Identifies the universal register destination

Y DREG Identifies the PEy data registers for swap (must appear to right of swap operator)

X DREG Identifies the PEx data register for swap (must appear to left of swap operator)

COMPUTE Defines a compute operation to be performed in parallel with the data transfer; if
omitted, this is a NOP

Type 6: Immediate Shift, dreg«···»DM | PM

8-22 ADSP-2136x SHARC Processor Programming Reference

Type 6: Immediate Shift, dreg«···»DM | PM

Immediate shift operation, optional condition, optional transfer between
data or program memory and register file

Syntax

Function (SISD)

In SISD mode, the Type 6 instruction provides an immediate shift, which
is a shifter operation that takes immediate data as its Y-operand. The
immediate data is one 8-bit value or two 6-bit values, depending on the
operation. The X-operand and the result are register file locations.

For more information on shifter operations, see “Shifter Operations” on
page 9-62. For more information on register restrictions, see “Data
Address Generators” in Chapter 4, Data Address Generators.

If an access to data or program memory from the register file is specified,
it is performed in parallel with the shifter operation. The I register
addresses data or program memory. The I value is post-modified by the
specified M register and updated with the modified value. If a condition
is specified, it affects the entire instruction.

Function (SIMD)

In SIMD mode, the Type 6 instruction provides the same immediate shift
operation as is available in SISD mode, but provides this operation simul-
taneously for the X and Y processing elements.

IF COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

ADSP-2136x SHARC Processor Programming Reference 8-23

Instruction Set

If an access to data or program memory from the register file is specified,
it is performed simultaneously on the X and Y processing elements in par-
allel with the shifter operation.

The X element uses the specified I register to address data or program
memory. The I value is post-modified by the specified M register and
updated with the modified value.The Y element adds one to the specified I
register to address data or program memory. If the broadcast read bits—
BDCST1 (for I1) or BDCST9 (for I9)—are set, the Y element uses the speci-
fied I and M registers without adding one.

If a condition is specified, it affects the entire instruction. The instruction
is executed in a processing element if the specified condition tests true in
that element independent of the condition result for the other element.

The following pseudo code compares the Type 6 instruction’s explicit and
implicit operations in SIMD mode.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND shiftimm , DM(Ia+1, 0) = cdreg ;

, PM(Ic+1, 0)

, cdreg = DM(Ia+1, 0) ;

PM(Ic+1, 0) ;

Do not use the pseudo code above as instruction syntax.

Type 6: Immediate Shift, dreg«···»DM | PM

8-24 ADSP-2136x SHARC Processor Programming Reference

Examples

IF GT R2 = LSHIFT R6 BY 0x4, DM(I4,M4)=R0;

IF NOT SZ R3 = FEXT R1 BY 8:4;

When the ADSP-2136x processor is in SISD mode, the computation and
data memory write in the first instruction are performed in PEx if the con-
dition’s outcome is true. In the second instruction, register R3 is loaded
with the result of the computation if the outcome of the condition is true.

When the processor is in SIMD mode, the condition is evaluated on each
processing element, PEx and PEy, independently. The computation and
data memory write executes on both PEs, either one PE, or neither PE
dependent on the outcome of the condition. If the condition is true in
PEx, the computation is performed, the result is stored in register R2, and
the data memory value is written from register R0. If the condition is true
in PEy, the computation is performed, the result is stored in register S2,
and the value within S0 is written into data memory. The second instruc-
tion’s condition is also evaluated on each processing element, PEx and
PEy, independently. If the outcome of the condition is true, register R3 is
loaded with the result of the computation on PEx, and register S3 is
loaded with the result of the computation on PEy.

R2 = LSHIFT R6 BY 0x4, F3=DM(I1,M3);

When the processor is in broadcast mode (the BDCST1 bit is set in the
MODE1 system register), the computation is performed, the result is stored
in R2, and the data memory value is read into register F3 via the I1 register
from DAG1. The SF3 register is also loaded with the same value from data
memory as F3.

ADSP-2136x SHARC Processor Programming Reference 8-25

Instruction Set

Type 6 Opcode (with data access)

Type 6 Opcode (without data access)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

100 0 I M COND G D DATAEX DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SHIFTOP DATA RN RX

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00010 COND DATAEX

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SHIFTOP DATA RN RX

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

SHIFTOP Specifies the shifter operation. For more information, see “Shifter Operations” on
page 9-62

DATA Specifies an 8-bit immediate shift value. For shifter operations requiring two 6-bit
values (a shift value and a length value), the DATAEX field adds 4 MSBs to the
DATA field, creating a 12-bit immediate value. The six LSBs are the shift value,
and the six MSBs are the length value.

D Selects the access Type (read or write) if a memory access is specified

G Selects data memory or program memory

Type 6: Immediate Shift, dreg«···»DM | PM

8-26 ADSP-2136x SHARC Processor Programming Reference

DREG Specifies the register file location

I Specifies the I register, which is post-modified and updated by the M register

M Identifies the M register for post-modify

Bits Description

ADSP-2136x SHARC Processor Programming Reference 8-27

Instruction Set

Type 7: Compute, modify

Index register modify, optional condition, optional compute operation

Syntax

Function (SISD)

In SISD mode, the Type 7 instruction provides an update of the specified
I register by the specified M register. If a compute operation is specified, it
is performed in parallel with the data access. If a condition is specified, it
affects the entire instruction. For more information on register restric-
tions, see “Data Address Generators” in Chapter 4, Data Address
Generators.

If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set
up for circular bufferring, the modify operation always executes cir-
cular buffer wraparound, independent of the state of the
CBUFEN bit.

Function (SIMD)

In SIMD mode, the Type 7 instruction provides the same update of the
specified I register by the specified M register as is available in SISD
mode, but provides additional features for the optional compute operation.

If a compute operation is specified, it is performed simultaneously on the
X and Y processing elements in parallel with the transfer. If a condition is
specified, it affects the entire instruction. The instruction is executed in a
processing element if the specified condition tests true in that element
independent of the condition result for the other element.

The following pseudo code compares the Type 7 instruction’s explicit and
implicit operations in SIMD mode.

IF COND compute , MODIFY (Ia, Mb) ;

(Ic, Md) ;

Type 7: Compute, modify

8-28 ADSP-2136x SHARC Processor Programming Reference

Examples

IF NOT FLAG2_IN R4=R6*R12(SUF), MODIFY(I10,M8);

IF NOT LCE MODIFY(I3,M1);

When the processor is in SISD mode, the computation and index register
modify in the first instruction are performed in PEx if the condition’s out-
come is true. In the second instruction, an index register modification
occurs if the outcome of the condition is true.

When the ADSP-2136x processor is in SIMD mode, the condition in the
first instruction is evaluated on each processing element, PEx and PEy,
independently. The computation executes on both PEs, either PE, or nei-
ther PE dependent on the outcome of the condition. If the condition is
true in PEx, the computation is performed, and the result is stored in R4.
If the condition is true in PEy, the computation is performed, and the
result is stored in S4. The index register modify operation occurs based on
the logical ORing of the outcome of the conditions tested on both PEs. In
the second instruction, the index register modify also occurs based on the
logical ORing of the outcomes of the conditions tested on both PEs.
Because both threads of a SIMD sequence may be dependent on a single
DAG index value, either thread needs to be able to cause a modify of the
index.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF PEx COND compute , MODIFY (Ia, Mb) ;

(Ic, Md) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF PEy COND compute {no implied MODIFY operation}

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-29

Instruction Set

Type 7 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00100 G COND I M

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

G Selects DAG1 or DAG2

I Specifies the I register

M Specifies the M register

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

Group II Instructions

8-30 ADSP-2136x SHARC Processor Programming Reference

Group II Instructions
The instructions in this group contain a compute field that specifies a com-
pute operation using the ALU, multiplier, or shifter. Because there are a
large number of options available for computations, these operations are
described separately in “Computations Reference” in Chapter 9, Compu-
tations Reference. Note that data moves between the MR registers and the
register file are considered multiplier operations and are also covered in
“Computations Reference” in Chapter 9, Computations Reference.
Group II instructions include the following.

• “Type 8: Direct Jump | Call” on page 8-31

Direct (or PC-relative) jump/call, optional condition

• “Type 9: Indirect Jump | Call, Compute” on page 8-35

Indirect (or PC-relative) jump/call, optional condition, optional
compute operation

• “Type 10: Indirect Jump | Compute, dreg«···»DM” on page 8-42

Indirect (or PC-relative) jump or optional compute operation with
transfer between data memory and register file

• “Type 11: Return From Subroutine | Interrupt, Compute” on
page 8-48

Return from subroutine or interrupt, optional condition, optional
compute operation

• “Type 12: Do Until Counter Expired” on page 8-53

Load loop counter, do loop until loop counter expired

• “Type 13: Do Until” on page 8-55

Do until termination

ADSP-2136x SHARC Processor Programming Reference 8-31

Instruction Set

Type 8: Direct Jump | Call

Direct (or PC-relative) jump/call, optional condition

Syntax

Function (SISD)

In SISD mode, the Type 8 instruction provides a jump or call to the spec-
ified address or PC-relative address. The PC-relative address is a 24-bit,
twos-complement value. The Type 8 instruction supports the following
modifiers.

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be
popped when the jump is executed. Use the (LA) modifier if the
jump transfers program execution outside of a loop. Do not use
(LA) if there is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets programs reuse an interrupt while it is
being serviced

Normally, the ADSP-2136x processor ignores and does not latch an inter-
rupt that reoccurs while its service routine is already executing. Jump (CI)
clears the status of the current interrupt without leaving the interrupt ser-
vice routine, This feature reduces the interrupt routine to a normal
subroutine and allows the interrupt to occur again, as a result of a

IF COND JUMP <addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF COND CALL <addr24> (DB) ;

(PC, <reladdr24>)

Type 8: Direct Jump | Call

8-32 ADSP-2136x SHARC Processor Programming Reference

different event or task in the ADSP-2136x processor system. The jump
(CI) instruction should be located within the interrupt service routine.
For more information on interrupts, see “Program Sequencer” in
Chapter 3, Program Sequencer.

To reduce the interrupt service routine to a normal subroutine, the jump
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The ADSP-2136x processor
then allows the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR)
modifier of the RTS if the interrupt occurs during the last two instruc-
tions of a loop. For related information, see “Type 11: Return From
Subroutine | Interrupt, Compute” on page 8-48.

Function (SIMD)

In SIMD mode, the Type 8 instruction provides the same jump or call
operation as in SISD mode, but provides additional features for handling
the optional condition.

If a condition is specified, the jump or call is executed if the specified
condition tests true in both the X and Y processing elements.

The following pseudo code compares the Type 8 instruction’s explicit and
implicit operations in SIMD mode.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

<addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

ADSP-2136x SHARC Processor Programming Reference 8-33

Instruction Set

Examples

IF AV JUMP(PC,0x00A4) (LA);

CALL init (DB); {init is a program label}

JUMP (PC,2) (DB,CI); {clear current int. for reuse}

When the ADSP-2136x processor is in SISD mode, the first instruction
performs a jump to the PC-relative address depending on the outcome of
the condition tested in PEx. In the second instruction, a jump to the pro-
gram label init occurs. A PC-relative jump takes place in the third
instruction.

When the ADSP-2136x processor is in SIMD mode, the first instruction
performs a jump to the PC-relative address depending on the logical
ANDing of the outcomes of the conditions tested in both PEs. In SIMD
mode, the second and third instructions operate the same as in SISD
mode. In the second instruction, a jump to the program label init occurs.
A PC-relative jump takes place in the third instruction.

IF (PEx AND PEy
COND) CALL

<addr24> (DB) ;

(PC, <reladdr24>)

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

{No explicit PEx operation}

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

{No implicit PEy operation}

Do not use the pseudo code above as instruction syntax.

Type 8: Direct Jump | Call

8-34 ADSP-2136x SHARC Processor Programming Reference

Type 8 Opcode (with direct branch)

Type 8 Opcode (with PC-relative branch)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00110 B A COND J CI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00111 B A COND J CI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

COND Specifies the test condition; if omitted, COND is TRUE

B Selects the branch type, jump or call; for calls, A and CI are ignored

J Determines whether the branch is delayed or non-delayed

ADDR Specifies a 24-bit program memory address

A Activates loop abort

CI Activates clear interrupt

RELADDR Holds a 24-bit, twos-complement value that is added to the current PC value to
generate the branch address

ADSP-2136x SHARC Processor Programming Reference 8-35

Instruction Set

Type 9: Indirect Jump | Call, Compute

Indirect (or PC-relative) jump/call, optional condition, optional compute
operation

Syntax

Function (SISD)

In SISD mode, the Type 9 instruction provides a jump or call to the spec-
ified PC-relative address or pre-modified I register value. The PC-relative
address is a 6-bit, two’s-complement value. If an I register is specified, it is
modified by the specified M register to generate the branch address. The I
register is not affected by the modify operation. The Type 9 instruction
supports the following modifiers:

• (DB)—delayed branch—starts a delayed branch

• (LA)—loop abort—causes the loop stacks and PC stack to be
popped when the jump is executed. Use the (LA) modifier if the
jump transfers program execution outside of a loop. Do not use
(LA) if there is no loop or if the jump address is within the loop.

• (CI)—clear interrupt—lets programs reuse an interrupt while it is
being serviced

IF COND JUMP (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) (LA) , ELSE compute

(CI)

(DB, LA)

(DB, CI)

IF COND CALL (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) , ELSE compute

Type 9: Indirect Jump | Call, Compute

8-36 ADSP-2136x SHARC Processor Programming Reference

Normally, the ADSP-2136x processor ignores and does not latch an inter-
rupt that reoccurs while its service routine is already executing. Jump (CI)
clears the status of the current interrupt without leaving the interrupt ser-
vice routine. This feature reduces the interrupt routine to a normal
subroutine and allows the interrupt to occur again, as a result of a differ-
ent event or task in the system. The jump (CI) instruction should be
located within the interrupt service routine. For more information on
interrupts, see “Program Sequencer” in Chapter 3, Program Sequencer.

To reduce an interrupt service routine to a normal subroutine, the jump
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The processor then allows
the interrupt to occur again.

When returning from a reduced subroutine, programs must use the (LR)
modifier of the RTS instruction if the interrupt occurs during the last two
instructions of a loop. For related information, see “Type 11: Return
From Subroutine | Interrupt, Compute” on page 8-48.

The jump or call is executed if the optional specified condition is true or
if no condition is specified. If a compute operation is specified without the
ELSE, it is performed in parallel with the jump or call. If a compute opera-
tion is specified with the ELSE, it is performed only if the condition
specified is false. Note that a condition must be specified if an ELSE com-
pute clause is specified.

Function (SIMD)

In SIMD mode, the Type 9 instruction provides the same jump or call
operation as is available in SISD mode, but provides additional features
for the optional condition.

If a condition is specified, the jump or call is executed if the specified
condition tests true in both the X and Y processing elements.

ADSP-2136x SHARC Processor Programming Reference 8-37

Instruction Set

If a compute operation is specified without the ELSE, it is performed by the
processing element(s) in which the condition test true in parallel with the
jump or call. If a compute operation is specified with the ELSE, it is per-
formed in an element when the condition tests false in that element. Note
that a condition must be specified if an ELSE compute clause is specified.

Note that for the compute, the X element uses the specified registers and
the Y element uses the complementary registers. For a list of complemen-
tary registers, see Table 2-16 on page 2-47.

Type 9: Indirect Jump | Call, Compute

8-38 ADSP-2136x SHARC Processor Programming Reference

The following pseudo code compares the Type 9 instruction’s explicit and
implicit operations in SIMD mode.

Examples

JUMP(M8,I12), R6=R6-1;

IF EQ CALL(PC,17)(DB), ELSE R6=R6-1;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

(Md, Ic) (DB) , (if PEx COND)
compute

;

(PC, <reladdr6>) (LA) , ELSE (if NOT PEx)
compute

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

(Md, Ic) (DB) , (if PEx COND)
compute

;

(PC, <reladdr6>) , ELSE (if NOT PEx)
compute

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy
COND) JUMP

(Md, Ic) (DB) , (if PEy COND)
compute

;

(PC, <reladdr6>) (LA) , ELSE (if NOT PEy)
compute

(CI)

(DB, LA)

(DB, CI)

IF (PEx AND PEy
COND) CALL

(Md, Ic) (DB) , (if PEy COND)
compute

;

(PC, <reladdr6>) , ELSE (if NOT PEy)
compute

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-39

Instruction Set

When the ADSP-2136x processor is in SISD mode, the indirect jump and
compute in the first instruction are performed in parallel. In the second
instruction, a call occurs if the condition is true, otherwise the computa-
tion is performed.

When the processor is in SIMD mode, the indirect jump in the first
instruction occurs in parallel with both processing elements executing
computations. In PEx, R6 stores the result, and S6 stores the result in PEy.
In the second instruction, the condition is evaluated independently on
each processing element, PEx and PEy. The call executes based on the log-
ical AND'ing of the PEx and PEy conditional tests. So, the call executes if
the condition tests true in both PEx and PEy. Because the ELSE inverts the
conditional test, the computation is performed independently on either
PEx or PEy based on the negative evaluation of the condition code seen by
that processing element. If the computation is executed, R6 stores the
result of the computation in PEx, and S6 stores the result of the computa-
tion in PEy.

For a summary of SISD/SIMD conditional testing, see
“SISD/SIMD Conditional Testing Summary” on page A-18.

Type 9: Indirect Jump | Call, Compute

8-40 ADSP-2136x SHARC Processor Programming Reference

Type 9 Opcode (with indirect branch)

Type 9 Opcode (with PC-relative branch)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01000 B A COND PMI PMM J E CI

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01001 B A COND RELADDR J E CI

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the test condition; if omitted, COND is true

 E Specifies whether or not an ELSE clause is used

B Selects the branch type, jump or call; for calls, A and CI are ignored

J Selects delayed or non-delayed branch

A Activates loop abort

CI Activates clear interrupt

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

ADSP-2136x SHARC Processor Programming Reference 8-41

Instruction Set

RELADDR Holds a 6-bit, twos-complement value that is added to the current PC value to
generate the branch address

PMI Specifies the I register for indirect branches; the I register is pre-modified but not
updated by the M register

PMM Specifies the M register for pre-modifies

Bits Description

Type 10: Indirect Jump | Compute, dreg«···»DM

8-42 ADSP-2136x SHARC Processor Programming Reference

Type 10: Indirect Jump | Compute, dreg«···»DM

Indirect (or PC-relative) jump or optional compute operation with trans-
fer between data memory and register file

Syntax

Function (SISD)

In SISD mode, the Type 10 instruction provides a conditional jump to
either specified PC-relative address or pre-modified I register value. In
parallel with the jump, this instruction also provides a transfer between
data memory and a data register with optional parallel compute operation.
For this instruction, the If condition and ELSE keywords are not optional
and must be used. If the specified condition is true, the jump is executed.
If the specified condition is false, the data memory transfer and optional
compute operation are performed in parallel. Only the compute operation
is optional in this instruction.

The PC-relative address for the jump is a 6-bit, twos-complement value. If
an I register is specified (Ic), it is modified by the specified M register (Md)
to generate the branch address. The I register is not affected by the modify
operation. For this jump, programs may not use the delay branch (DB),
loop abort (LA), or clear interrupt (CI) modifiers.

For the data memory access, the I register (Ia) provides the address. The I
register value is post-modified by the specified M register (Mb) and is
updated with the modified value. Pre-modify addressing is not available
for this data memory access.

IF COND Jump (Md, Ic) , Else compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

ADSP-2136x SHARC Processor Programming Reference 8-43

Instruction Set

Function (SIMD)

In SIMD mode, the Type 10 instruction provides the same conditional
jump as is available in SISD mode, but the jump is executed if the speci-
fied condition tests true in both the X or Y processing elements.

In parallel with the jump, this instruction also provides a transfer between
data memory and a data register in the X and Y processing elements. An
optional parallel compute operation for the X and Y processing elements is
also available.

For this instruction, the If condition and ELSE keywords are not optional
and must be used. If the specified condition is true in both processing ele-
ments, the jump is executed. The the data memory transfer and optional
compute operation specified with the ELSE are performed in an element
when the condition tests false in that element.

Note that for the compute, the X element uses the specified Dreg register
and the Y element uses the complementary Cdreg register. For a list of
complementary registers, see Table 2-16 on page 2-47. Only the compute
operation is optional in this instruction.

The addressing for the jump is the same in SISD and SIMD modes, but
addressing for the data memory access differs slightly. For the data mem-
ory access in SIMD mode, X processing element uses the specified I
register (Ia) to address memory. The I register value is post-modified by
the specified M register (Mb) and is updated with the modified value. The
Y element adds one to the specified I register to address memory.
Pre-modify addressing is not available for this data memory access.

Type 10: Indirect Jump | Compute, dreg«···»DM

8-44 ADSP-2136x SHARC Processor Programming Reference

The following pseudo code compares the Type 10 instruction’s explicit
and implicit operations in SIMD mode.

Examples

IF TF JUMP(M8, I8),

ELSE R6=DM(I6, M1);

IF NE JUMP(PC, 0x20),

ELSE F12=FLOAT R10 BY R3, R6=DM(I5, M0);

When the processor is in SISD mode, the indirect jump in the first
instruction is performed if the condition tests true. Otherwise, R6 stores
the value of a data memory read. The second instruction is much like the
first, however, it also includes an optional compute, which is performed in
parallel with the data memory read.

When the ADSP-2136x processor is in SIMD mode, the indirect jump in
the first instruction executes depending on the outcome of the conditional
in both processing element. The condition is evaluated independently on
each processing element, PEx and PEy. The indirect jump executes based
on the logical ANDing of the PEx and PEy conditional tests. So, the indi-
rect jump executes if the condition tests true in both PEx and PEy. The
data memory read is performed independently on either PEx or PEy based
on the negative evaluation of the condition code seen by that PE.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy
COND) Jump

(Md, Ic) , Else
(if NOT PEx)

compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy
COND) Jump

(Md, Ic) , Else
(if NOT PEy)

compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-45

Instruction Set

The second instruction is much like the first instruction. The second
instruction, however, includes an optional compute also performed in par-
allel with the data memory read independently on either PEx or PEy and
based on the negative evaluation of the condition code seen by that pro-
cessing element.

For a summary of SISD/SIMD conditional testing, see
“SISD/SIMD Conditional Testing Summary” on page A-18.

IF TF JUMP(M8,I8), ELSE R6=DM(I1,M1);

When the ADSP-2136x processor is in broadcast mode (the BDCST1 bit is
set in the MODE1 system register), the instruction performs an indirect
jump if the condition tests true. Otherwise, R6 stores the value of a data
memory read via the I1 register from DAG1. The S6 register is also loaded
with the same value from data memory as R6.

Type 10: Indirect Jump | Compute, dreg«···»DM

8-46 ADSP-2136x SHARC Processor Programming Reference

Type 10 Opcode (with indirect jump)

Type 10 Opcode (with PC-relative jump)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

110 D DMI DMM COND PMI PMM DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

111 D DMI DMM COND RELADDR DREG

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

ADSP-2136x SHARC Processor Programming Reference 8-47

Instruction Set

Bits Description

COND Specifies the condition to test; not optional

PMI Specifies the I register for indirect branches; the I register is premodified, but not
updated by the M register

PMM Specifies the M register for pre-modifies

D Selects the data memory access Type (read or write)

DREG Specifies the register file location

DMI Specifies the I register that is post-modified and updated by the M register

DMM Identifies the M register for post-modifies

COMPUTE Defines a compute operation to be performed in parallel with the data access; if
omitted, this is a NOP

RELADDR Holds a 6-bit, twos-complement value that is added to the current PC value to
generate the branch address

Type 11: Return From Subroutine | Interrupt, Compute

8-48 ADSP-2136x SHARC Processor Programming Reference

Type 11: Return From Subroutine | Interrupt, Compute

Indirect (or PC-relative) jump or optional compute operation with trans-
fer between data memory and register file

Syntax

Function (SISD)

In SISD mode, the Type 11 instruction provides a return from a subrou-
tine (RTS) or return from an interrupt service routine (RTI). A return
causes the processor to branch to the address stored at the top of the PC
stack. The difference between RTS and RTI is that the RTS instruction
only pops the return address off the PC stack, while the RTI does that
plus:

• Pops status stack if the ASTAT and MODE1 status registers have been
pushed—if the interrupt was IRQ2-0, the timer interrupt, or the
VIRPT vector interrupt

• Clears the appropriate bit in the interrupt latch register (IRPTL)
and the interrupt mask pointer (IMASKP)

The return executes when the optional If condition is true (or if no con-
dition is specified). If a compute operation is specified without the ELSE, it
is performed in parallel with the return. If a compute operation is specified
with the ELSE, it is performed only when the If condition is false. Note
that a condition must be specified if an ELSE compute clause is specified.

IF COND RTS (DB) , compute ;

(LR) , ELSE compute

(DB, LR)

IF COND RTI (DB) , compute ;

, ELSE compute

ADSP-2136x SHARC Processor Programming Reference 8-49

Instruction Set

RTS supports two modifiers (DB) and (LR); RTI supports one modifier,
(DB). If the delayed branch (DB) modifier is specified, the return is
delayed; otherwise, it is non-delayed.

If the return is not a delayed branch and occurs as one of the last three
instructions of a loop, programs must use the loop reentry (LR) modifier
with the subroutine’s RTS instruction. The (LR) modifier assures proper
reentry into the loop. For example, the processor checks the termination
condition in counter-based loops by decrementing the current loop
counter (CURLCNTR) during execution of the instruction two locations
before the end of the loop. In this case, the RTS (LR) instruction prevents
the loop counter from being decremented again, avoiding the error of dec-
rementing twice for the same loop iteration.

Programs must also use the (LR) modifier for RTS when returning from a
subroutine that has been reduced from an interrupt service routine with a
jump (CI) instruction. This case occurs when the interrupt occurs during
the last two instructions of a loop. For a description of the jump (CI)
instruction, see “Type 8: Direct Jump | Call” on page 8-31 or “Type 9:
Indirect Jump | Call, Compute” on page 8-35.

Function (SIMD)

In SIMD mode, the Type 11 instruction provides the same return opera-
tions as are available in SISD mode, except that the return is executed if
the specified condition tests true in both the X and Y processing
elements.

In parallel with the return, this instruction also provides a parallel compute
or ELSE compute operation for the X and Y processing elements. If a con-
dition is specified, the optional compute is executed in a processing
element if the specified condition tests true in that processing element. If
a compute operation is specified with the ELSE, it is performed in an ele-
ment when the condition tests false in that element.

Type 11: Return From Subroutine | Interrupt, Compute

8-50 ADSP-2136x SHARC Processor Programming Reference

Note that for the compute, the X element uses the specified registers, and
the Y element uses the complementary registers. For a list of complemen-
tary registers, see Table 2-16 on page 2-47.

The following pseudo code compares the Type 11 instruction’s explicit
and implicit operations in SIMD mode.

Examples

RTI, R6=R5 XOR R1;

IF le RTS(DB);

IF sz RTS, ELSE R0=LSHIFT R1 BY R15;

When the ADSP-2136x processor is in SISD mode, the first instruction
performs a return from interrupt and a computation in parallel. The sec-
ond instruction performs a return from subroutine only if the condition is
true. In the third instruction, a return from subroutine is executed if the
condition is true. Otherwise, the computation executes.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB) , (if PEx COND) compute ;

(LR) , ELSE (if NOT PEx) compute

(DB, LR)

IF (PEx AND PEy COND) RTI (DB) , (if PEx COND) compute ;

, ELSE (if NOT PEx) compute

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

IF (PEx AND PEy COND) RTS (DB) , (if PEy COND) compute ;

(LR) , ELSE (if NOT PEy) compute

(DB, LR)

IF (PEx AND PEy COND) RTI (DB) , (if PEy COND) compute ;

, ELSE (if NOT PEy) compute

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-51

Instruction Set

When the ADSP-2136x processor is in SIMD mode, the first instruction
performs a return from interrupt and both processing elements execute the
computation in parallel. The result from PEx is placed in R6, and the
result from PEy is placed in S6. The second instruction performs a return
from subroutine (RTS) if the condition tests true in both PEx or PEy. In
the third instruction, the condition is evaluated independently on each
processing element, PEx and PEy. The RTS executes based on the logical
ANDing of the PEx and PEy conditional tests. So, the RTS executes if the
condition tests true in both PEx and PEy. Because the ELSE inverts the
conditional test, the computation is performed independently on either
PEx or PEy based on the negative evaluation of the condition code seen by
that processing element. The R0 register stores the result in PEx, and S0
stores the result in PEy if the computations are executed.

For a summary of SISD/SIMD conditional testing, see
“SISD/SIMD Conditional Testing Summary” on page A-18.

Type 11: Return From Subroutine | Interrupt, Compute

8-52 ADSP-2136x SHARC Processor Programming Reference

Type 11 Opcode (return from subroutine)

Type 11 Opcode (return from interrupt)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01010 COND J E L
R

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01011 COND J E

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Bits Description

COND Specifies the test condition; if omitted, COND is true

 J Determines whether the return is delayed or non-delayed

E Specifies whether an ELSE clause is used

COMPUTE Defines the compute operation to be performed; if omitted, this is a NOP

LR Specifies whether or not the loop reentry modifier is specified

ADSP-2136x SHARC Processor Programming Reference 8-53

Instruction Set

Type 12: Do Until Counter Expired

Load loop counter, do loop until loop counter expired

Syntax

Function (SISD and SIMD)

In SISD or SIMD modes, the Type 12 instruction sets up a counter-based
program loop. The loop counter LCNTR is loaded with 16-bit immediate
data or from a universal register. The loop start address is pushed on the
PC stack. The loop end address and the LCE termination condition are
pushed on the loop address stack. The end address can be either a label for
an absolute 24-bit program memory address, or a PC-relative 24-bit
two’s-complement address. The LCNTR is pushed on the loop counter stack
and becomes the CURLCNTR value. The loop executes until the CURLCNTR
reaches zero.

Examples

LCNTR=100, DO fmax UNTIL LCE; {fmax is a program label}

LCNTR=R12, DO (PC,16) UNTIL LCE;

The ADSP-2136x processor (in SISD or SIMD) executes the action at the
indicated address for the duration of the loop.

LCNTR = <data16> , DO <addr24> UNTIL LCE;

ureg (PC, <reladdr24>)

Type 12: Do Until Counter Expired

8-54 ADSP-2136x SHARC Processor Programming Reference

Type 12 Opcode (with immediate loop counter load)

Type 12 Opcode (with loop counter load from a Ureg)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01100 DATA

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01101 0 UREG

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

RELADDR Specifies the end-of-loop address relative to the DO LOOP instruction address;
the assembler also accepts an absolute address and converts the absolute address to
the equivalent relative address for coding

DATA Specifies a 16-bit value to load into the loop counter (LCNTR) for an immediate
load

UREG Specifies a register containing a 16-bit value to load into the loop counter
(LCNTR) for a load from an universal register

ADSP-2136x SHARC Processor Programming Reference 8-55

Instruction Set

Type 13: Do Until

Do until termination

Syntax

Function (SISD)

In SISD mode, the Type 13 instruction sets up a conditional program
loop. The loop start address is pushed on the PC stack. The loop end
address and the termination condition are pushed on the loop stack. The
end address can be either a label for an absolute 24-bit program memory
address or a PC-relative, 24-bit twos-complement address. The loop exe-
cutes until the termination condition tests true.

Function (SIMD)

In SIMD mode, the Type 13 instruction provides the same conditional
program loop as is available in SISD mode, except that in SIMD mode the
loop executes until the termination condition tests true in both the X and
Y processing elements.

DO <addr24> UNTIL termination ;

(PC, <reladdr24>)

Type 13: Do Until

8-56 ADSP-2136x SHARC Processor Programming Reference

The following pseudo code compares the Type 13 instruction’s explicit
and implicit operations in SIMD mode.

Examples

DO end UNTIL FLAG1_IN; {end is a program label}

DO (PC,7) UNTIL AC;

When the processor is in SISD mode, the end program label in the first
instruction specifies the start address for the loop, and the loop is executed
until the instruction’s condition tests true. In the second instruction, the
start address is given in the form of a PC-relative address. The loop exe-
cutes until the instruction’s condition tests true.

When the ADSP-2136x processor is in SIMD mode, the end program
label in the first instruction specifies the start address for the loop, and the
loop is executed until the instruction’s condition tests true in both PEx or
PEy. In the second instruction, the start address is given in the form of a
PC-relative address. The loop executes until the instruction’s condition
tests true in both PEx or PEy.

SIMD Explicit Operation (Program Sequencer Operation Stated in the Instruction Syntax

DO <addr24> UNTIL (PEx AND PEy) termination ;

(PC, <reladdr24>)

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

{No explicit PEx operation}

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

{No implicit PEy operation}

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-57

Instruction Set

Type 13 Opcode (relative addressing)

Group III Instructions
Group III instructions include the following.

• “Type 14: Ureg«···»DM | PM (direct addressing)” on page 8-59

Transfer between data or program memory and universal register,
direct addressing, immediate address

• “Type 15: Ureg«···»DM | PM (indirect addressing)” on page 8-62

Transfer between data or program memory and universal register,
indirect addressing, immediate modifier

• “Type 16: Immediate data···»DM | PM” on page 8-66

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01110 TERM

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

RELADDR Specifies the end-of-loop address relative to the Do Loop instruction address; the
assembler accepts an absolute address as well and converts the absolute address to
the equivalent relative address for coding

TERM Specifies the termination condition

Group III Instructions

8-58 ADSP-2136x SHARC Processor Programming Reference

Immediate data write to data or program memory

• “Type 17: Immediate data···»Ureg” on page 8-69

Immediate data write to universal register

ADSP-2136x SHARC Processor Programming Reference 8-59

Instruction Set

Type 14: Ureg«···»DM | PM (direct addressing)

Transfer between data or program memory and universal register, direct
addressing, immediate address

Syntax

Function (SISD)

In SISD mode, the Type 14 instruction sets up an access between data or
program memory and a universal register, with direct addressing. The
entire data or program memory address is specified in the instruction.
Addresses are 32 bits wide (0 to 232–1). The optional (LW) in this syntax
lets programs specify long word addressing, overriding default addressing
from the memory map.

Function (SIMD)

In SIMD mode, the Type 14 instruction provides the same access between
data or program memory and a universal register, with direct addressing,
as is available in SISD mode, except that addressing differs slightly, and
the transfer occurs in parallel for the X and Y processing elements.

For the memory access in SIMD mode, the X processing element uses the
specified 32-bit address to address memory. The Y element adds one to
the specified 32-bit address to address memory.

DM(<addr32>)
PM(<addr32>)

= ureg (LW);

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

Type 14: Ureg«···»DM | PM (direct addressing)

8-60 ADSP-2136x SHARC Processor Programming Reference

For the universal register, the X element uses the specified Ureg, and the Y
element uses the complementary register (Cureg) that corresponds to the
Ureg register specified in the instruction. For a list of complementary reg-
isters, see Table 2-16 on page 2-47. Note that only the Cureg subset
registers which have complementary registers are effected by SIMD mode.

The following pseudo code compares the Type 14 instruction’s explicit
and implicit operations in SIMD mode.

Examples

DM(temp)=MODE1; {temp is a program label}

WAIT=PM(0x489060);

When the ADSP-2136x processor is in SISD mode, the first instruction
performs a direct memory write of the value in the MODE1 register into data
memory with the data memory destination address specified by the pro-
gram label, temp. The second instruction initializes the WAIT register with
the value found in the specified address in program memory.

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<addr32>)
PM(<addr32>)

= ureg (LW);

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<addr32>+1)
PM(<addr32>+1)

= cureg (LW);

cureg = DM(<addr32>+1) (LW);

PM(<addr32>+1) (LW);

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-61

Instruction Set

Because of the register selections in this example, these two instructions
operate the same in SIMD and SISD mode. The MODE1 (SYSCON) and WAIT
(IOP) registers are not included in the Cureg subset, so they do not oper-
ate differently in SIMD mode.

Type 14 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 100 G D L UREG ADDR
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR
(lower 24 bits)

Bits Description

D Selects the access Type (read or write)

G Selects the memory Type (data or program)

L Forces a long word (LW) access when address is in normal word address range

UREG Specifies the number of a universal register

ADDR Contains the immediate address value

Type 15: Ureg«···»DM | PM (indirect addressing)

8-62 ADSP-2136x SHARC Processor Programming Reference

Type 15: Ureg«···»DM | PM (indirect addressing)

Transfer between data or program memory and universal register, indirect
addressing, immediate modifier

Syntax

Function (SISD)

In SISD mode, the Type 15 instruction sets up an access between data or
program memory and a universal register, with indirect addressing using I
registers. The I register is pre-modified with an immediate value specified
in the instruction. The I register is not updated. Address modifiers are 32
bits wide (0 to 232–1). The Ureg may not be from the same DAG (that is,
DAG1 or DAG2) as Ia/Mb or Ic/Md. For more information on register
restrictions, see “Data Address Generators” in Chapter 4, Data Address
Generators. The optional (LW) in this syntax lets programs specify long
word addressing, overriding default addressing from the memory map.

Function (SIMD)

In SIMD mode, the Type 15 instruction provides the same access between
data or program memory and a universal register, with indirect addressing
using I registers, as is available in SISD mode, except that addressing dif-
fers slightly, and the transfer occurs in parallel for the X and Y processing
elements.

DM(<data32>, Ia)
PM(<data32>, Ic)

= ureg (LW);

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

ADSP-2136x SHARC Processor Programming Reference 8-63

Instruction Set

The X processing element uses the specified I register—pre-modified with
an immediate value—to address memory. The Y processing element adds
one to the pre-modified I value to address memory. The I register is not
updated.

The Ureg specified in the instruction is used for the X processing element
transfer and may not be from the same DAG (that is, DAG1 or DAG2) as
Ia/Mb or Ic/Md. The Y element uses the complementary register (Cureg)
that correspond to the Ureg register specified in the instruction. For a list
of complementary registers, see Table 2-16 on page 2-47. Note that only
the Cureg subset registers which have complimentary registers are effected
by SIMD mode. For more information on register restrictions, see “Data
Address Generators” in Chapter 4, Data Address Generators.

The following pseudo code compares the Type 15 instruction’s explicit
and implicit operations in SIMD mode.

Examples

DM(24,I5)=TCOUNT;

USTAT1=PM(offs,I13); {“offs” is a user-defined constant}

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(<data32>, Ia)
PM(<data32>, Ic)

= ureg (LW);

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(<data32>+1, Ia)
PM(<data32>+1, Ic)

= cureg (LW);

cureg = DM(<data32>+1, Ia) (LW);

PM(<data32>+1, Ic)

Do not use the pseudo code above as instruction syntax.

Type 15: Ureg«···»DM | PM (indirect addressing)

8-64 ADSP-2136x SHARC Processor Programming Reference

When the processor is in SISD mode, the first instruction performs a data
memory write, using indirect addressing and the Ureg timer register,
TCOUNT. The DAG1 register I5 is pre-modified with the immediate value
of 24. The I5 register is not updated after the memory access occurs. The
second instruction performs a program memory read, using indirect
addressing and the system register, USTAT1. The DAG2 register I13 is
pre-modified with the immediate value of the defined constant, offs. The
I13 register is not updated after the memory access occurs.

Because of the register selections in this example, the first instruction in
this example operates the same in SIMD and SISD mode. The TCOUNT
(timer) register is not included in the Cureg subset, and therefore the first
instruction operates the same in SIMD and SISD mode.

The second instruction operates differently in SIMD. The USTAT1 (sys-
tem) register is included in the Cureg subset. Therefore, a program
memory read—using indirect addressing and the system register, USTAT1
and its complimentary register USTAT2—is performed in parallel on PEx
and PEy respectively. The DAG2 register I13 is pre-modified with the
immediate value of the defined constant, offs, to address memory on
PEx. This same pre-modified value in I13 is skewed by 1 to address mem-
ory on PEy. The I13 register is not updated after the memory access
occurs in SIMD mode.

Type 15 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

101 G I D L UREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

ADSP-2136x SHARC Processor Programming Reference 8-65

Instruction Set

Bits Description

D Selects the access Type (read or write)

G Selects the memory Type (data or program)

L Forces a long word (LW) access when address is in normal word address range

UREG Specifies the number of a universal register

DATA Specifies the immediate modify value for the I register

Type 16: Immediate data···»DM | PM

8-66 ADSP-2136x SHARC Processor Programming Reference

Type 16: Immediate data···»DM | PM

Immediate data write to data or program memory

Syntax

Function (SISD)

In SISD mode, the Type 16 instruction sets up a write of 32-bit immedi-
ate data to data or program memory, with indirect addressing. The data is
placed in the most significant 32 bits of the 40-bit memory word. The
least significant 8 bits are loaded with 0s. The I register is post-modified
and updated by the specified M register.

Function (SIMD)

In SIMD mode, the Type 16 instruction provides the same write of 32-bit
immediate data to data or program memory, with indirect addressing, as is
available in SISD mode, except that addressing differs slightly, and the
transfer occurs in parallel for the X and Y processing elements.

The X processing element uses the specified I register to address memory.
The Y processing element adds one to the I register to address memory.
The I register is post-modified and updated by the specified M register.

The following pseudo code compares the Type 16 instruction’s explicit
and implicit operations in SIMD mode.

DM(Ia, Mb)
PM(Ic, Md)

= <data32> ;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

DM(Ia, Mb) = <data32> ;

PM(Ic, Md)

Do not use the pseudo code above as instruction syntax.

ADSP-2136x SHARC Processor Programming Reference 8-67

Instruction Set

Examples

DM(I4,M0)=19304;

PM(I14,M11)=count; {count is user-defined constant}

When the ADSP-2136x processor is in SISD mode, the two immediate
memory writes are performed on PEx. The first instruction writes to data
memory and the second instruction writes to program memory. DAG1
and DAG2 are used to indirectly address the locations in memory to
which values are written. The I4 and I14 registers are post-modified and
updated by M0 and M11 respectively.

When the processor is in SIMD mode, the two immediate memory writes
are performed in parallel on PEx and PEy. The first instruction writes to
data memory and the second instruction writes to program memory.
DAG1 and DAG2 are used to indirectly address the locations in memory
to which values are written. The I4 and I14 registers are post-modified
and updated by M0 and M11 respectively.

Type 16 Opcode

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

DM(Ia+1, 0)
PM(Ic+1, 0)

= <data32> ;

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

100 1 I M G DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Do not use the pseudo code above as instruction syntax.

Type 16: Immediate data···»DM | PM

8-68 ADSP-2136x SHARC Processor Programming Reference

Bits Description

I Selects the I register

M Selects the M register

G Selects the memory (data or program)

DATA Specifies the 32-bit immediate data

ADSP-2136x SHARC Processor Programming Reference 8-69

Instruction Set

Type 17: Immediate data···»Ureg

Immediate data write to universal register

Syntax

Function (SISD)

In SISD mode, the Type 17 instruction writes 32-bit immediate data to a
universal register. If the register is 40 bits wide, the data is placed in the
most significant 32 bits, and the least significant 8 bits are loaded with 0s.

Function (SIMD)

In SIMD mode, the Type 17 instruction provides the same write of 32-bit
immediate data to universal register as is available in SISD mode, but pro-
vides parallel writes for the X and Y processing elements.

The X element uses the specified Ureg, and the Y element uses the comple-
mentary Cureg. Note that only the Cureg subset registers which have
complimentary registers are effected by SIMD mode. For a list of comple-
mentary registers, see Table 2-16 on page 2-47.

The following pseudo code compares the Type 17 instruction’s explicit
and implicit operations in SIMD mode.

ureg = <data32> ;

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

ureg = <data32> ;

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

cureg = <data32> ;

Do not use the pseudo code above as instruction syntax.

Type 17: Immediate data···»Ureg

8-70 ADSP-2136x SHARC Processor Programming Reference

Examples

ASTATx=0x0;

M15=mod1; {mod1 is user-defined constant}

When the ADSP-2136x processor is in SISD mode, the two instructions
load immediate values into the specified registers.

Because of the register selections in this example, the second instruction in
this example operates the same in SIMD and SISD mode. The ASTATx
(system) register is included in the Cureg subset. In the first instruction,
the immediate data write to the system register ASTATx and its complimen-
tary register ASTATy are performed in parallel on PEx and PEy respectively.
In the second instruction, the M15 register is not included in the Cureg
subset. So, the second instruction operates the same in SIMD and SISD
mode.

Type 17 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01111 0 UREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Bits Description

UREG Specifies the number of a universal register

DATA Specifies the immediate modify value for the I register

ADSP-2136x SHARC Processor Programming Reference 8-71

Instruction Set

Group IV Instructions
Group IV instructions include the following.

• “Type 18: System Register Bit Manipulation” on page 8-72

System register bit manipulation

• “Type 19: I Register Modify | Bit-Reverse” on page 8-75

Immediate I register modify, with or without bit-reverse

• “Type 20: Push, Pop Stacks, Flush Cache” on page 8-78

Push or Pop of loop and/or status stacks

• “Type 21: Nop” on page 8-80

No Operation (NOP)

• “Type 22: Idle” on page 8-81

Idle

• “Type 25: Cjump/Rframe” on page 8-82

CJUMP/RFRAME (Compiler-generated instruction)

Type 18: System Register Bit Manipulation

8-72 ADSP-2136x SHARC Processor Programming Reference

Type 18: System Register Bit Manipulation

System register bit manipulation

Syntax

Function (SISD)

In SISD mode, the Type 18 instruction provides a bit manipulation oper-
ation on a system register. This instruction can set, clear, toggle or test
specified bits, or compare (XOR) the system register with a specified data
value. In the first four operations, the immediate data value is a mask.

The set operation sets all the bits in the specified system register that are
also set in the specified data value. The clear operation clears all the bits
that are set in the data value. The toggle operation toggles all the bits that
are set in the data value. The test operation sets the bit test flag (BTF in
ASTATx/y) if all the bits that are set in the data value are also set in the sys-
tem register. The XOR operation sets the bit test flag (BTF in ASTATx/y) if
the system register value is the same as the data value.

For more information on shifter operations, see “Computations Refer-
ence” in Chapter 9, Computations Reference. For more information on
system registers, see “Control and Status System Registers” on page B-2.

Function (SIMD)

In SIMD mode, the Type 18 instruction provides the same bit manipula-
tion operations as are available in SISD mode, but provides them in
parallel for the X and Y processing elements.

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

ADSP-2136x SHARC Processor Programming Reference 8-73

Instruction Set

The X element operation uses the specified Sreg, and the Y element opera-
tions uses the complementary Csreg. For a list of complementary registers,
see Table 2-16 on page 2-47.

The following pseudo code compares the Type 18 instruction’s explicit
and implicit operations in SIMD mode.

Examples

BIT SET MODE2 0x00000070;

BIT TST ASTATx 0x00002000;

When the processor is in SISD mode, the first instruction sets all of the
bits in the MODE2 register that are also set in the data value, bits 4, 5, and 6
in this case. The second instruction sets the bit test flag (BTF in ASTATx) if
all the bits set in the data value, just bit 13 in this case, are also set in the
system register.

Because of the register selections in this example, the first instruction
operates the same in SISD and SIMD, but the second instruction operates
differently in SIMD. Only the Cureg subset registers which have

SIMD Explicit Operation (PEx Operation Stated in the Instruction Syntax)

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

SIMD Implicit Operation (PEy Operation Implied by the Instruction Syntax)

BIT SET csreg <data32> ;

CLR

TGL

TST

XOR

Do not use the pseudo code above as instruction syntax.

Type 18: System Register Bit Manipulation

8-74 ADSP-2136x SHARC Processor Programming Reference

complimentary registers are affected in SIMD mode. The ASTATx (system)
register is included in the Cureg subset, so the bit test operations are per-
formed independently on each processing element in parallel using these
complimentary registers. The BTF is set on both PEs (ASTATx and ASTATy),
either one PE (ASTATx or ASTATy), or neither PE dependent on the out-
come of the bit test operation.

Type 18 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10100 BOP SREG DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

Bits Description

BOP Selects one of the five bit operations

SREG Specifies the system register

DATA Specifies the data value

ADSP-2136x SHARC Processor Programming Reference 8-75

Instruction Set

Type 19: I Register Modify | Bit-Reverse

Immediate I register modify, with or without bit-reverse

Syntax

Function (SISD & SIMD)

In SISD and SIMD modes, the Type 19 instruction modifies and updates
the specified I register by an immediate 32-bit data value. If the address is
to be bit-reversed, programs must specify a DAG1 Ia register (I0–I7) or
DAG2 Ic register (I8–I15), and the modified value is bit-reversed before
being written back to the I register. No address is output in either case.
For more information on register restrictions, see “Data Address Genera-
tors” in Chapter 4, Data Address Generators.

If the DAG’s Lx and Bx registers that correspond to Ia or Ic are set
up for circular bufferring, the modify operation always executes cir-
cular buffer wraparound, independent of the state of the CBUFEN
bit.

Examples

MODIFY (I4,304);

BITREV (I7,space); {space is a user-defined constant}

MODIFY (Ia, <data32>) ;

(Ic, <data32>)

BITREV (Ia, <data32>) ;

(Ic, <data32>)

Type 19: I Register Modify | Bit-Reverse

8-76 ADSP-2136x SHARC Processor Programming Reference

In SISD and SIMD, the first instruction modifies and updates the I4 reg-
ister by the immediate value of 304. The second instruction utilizes the
DAG1 register I7. The value originally stored in I7 is modified by the
defined constant, space, and is then bit-reversed before being written back
to the I7 register.

Type 19 Opcode (without bit-reverse)

Type 19 Opcode (with bit-reverse)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10110 0 G I DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10110 1 G I DATA
(upper 8 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 24 bits)

ADSP-2136x SHARC Processor Programming Reference 8-77

Instruction Set

Bits Description

G Selects the data address generator:
G=0 for DAG1
G=1 for DAG2

 I Selects the I register:
I=0–7 for I0–I7 (for DAG1)
I=0–7 for I8–I15 (for DAG2)

DATA Specifies the immediate modifier

Type 20: Push, Pop Stacks, Flush Cache

8-78 ADSP-2136x SHARC Processor Programming Reference

Type 20: Push, Pop Stacks, Flush Cache

Push or Pop of loop and/or status stacks

Syntax

Function (SISD and SIMD)

In SISD and SIMD modes, the Type 20 instruction pushes or pops the
loop address and loop counter stacks, the status stack, and/or the PC
stack, and/or clear the instruction cache. Any of set of pushes (push loop,
push sts, push pcstk) or pops (pop loop, pop sts, pop pcstk) may be com-
bined in a single instruction, but a push may not be combined with a pop.

Flushing the instruction cache invalidates all entries in the cache, with no
latency—the cache is cleared at the end of the cycle.

Examples

PUSH LOOP, PUSH STS;

POP PCSTK, FLUSH CACHE;

In SISD and SIMD, the first instruction pushes the loop stack and status
stack. The second instruction pops the PC stack and flushes the cache.

PUSH LOOP , PUSH STS , PUSH PCSTK , FLUSH CACHE ;

POP POP POP

ADSP-2136x SHARC Processor Programming Reference 8-79

Instruction Set

Type 20 Opcode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 10111
L
P
U

L
P
O

S
P
U

S
P
O

P
P
U

P
P
O

F
C

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Description

LPU Pushes the loop stacks

LPO Pops the loop stacks

SPU Pushes the status stack

SPO Pops the status stack

PPU Pushes the PC stack

PPO Pops the PC stack

FC Causes a cache flush

Type 21: Nop

8-80 ADSP-2136x SHARC Processor Programming Reference

Type 21: Nop

No Operation (NOP)

Syntax

Function (SISD and SIMD)

In SISD and SIMD modes, the Type 21 instruction provides a null opera-
tion; it increments only the fetch address.

Type 21 Opcode

NOP ;

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00000 0

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-2136x SHARC Processor Programming Reference 8-81

Instruction Set

Type 22: Idle

Idle

Syntax

Function (SISD and SIMD)

In SISD and SIMD modes, the Type 22 instruction executes a NOP and
puts the processor in a low power state. The processor remains in the low
power state until an interrupt occurs. On return from the interrupt, exe-
cution continues at the instruction following the Idle instruction.

Type 22 Opcode

IDLE ;

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00000 1

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type 25: Cjump/Rframe

8-82 ADSP-2136x SHARC Processor Programming Reference

Type 25: Cjump/Rframe

Cjump/Rframe (Compiler-generated instruction)

Syntax

Function (SISD and SIMD)

In SISD mode, the Type 25 instruction (cjump) combines a direct or
PC-relative jump with register transfer operations that save the frame and
stack pointers. The instruction (rframe) also reverses the register transfers
to restore the frame and stack pointers.

The Type 25 instruction is only intended for use by a C (or other
high-level-language) compiler. Do not use cjump or rframe in assembly
programs.

The different forms of this instruction perform the operations listed in
Table 8-1.

CJUMP function (DB) ;

(PC, <reladdr24>)

RFRAME ;

Table 8-1. Operations Done by Forms of the Type 25 Instruction

Compiler-Generated
Instruction1

1 In this table, raddr indicates a relative 24-bit address.

Operations Performed in
SISD Mode

Operations Performed in
SIMD Mode

CJUMP label (DB); JUMP label (DB),
 R2=I6, I6=I7;

JUMP label (DB),
 R2=I6, S2=I6, I6=I7;

CJUMP (PC,raddr)
(DB);

JUMP (PC,raddr) (DB),
 R2=I6, I6=I7;

JUMP (PC,raddr) (DB),
 R2=I6, S2=I6, I6=I7;

RFRAME; I7=I6, I6=DM(0,I6); I7=I6, I6=DM(0,I6),
 I6=DM(1,I6);

ADSP-2136x SHARC Processor Programming Reference 8-83

Instruction Set

Type 25a Opcode (with direct branch)

Type 25b Opcode (with PC-relative branch)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1000 0000 0100 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1000 0100 0100 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELADDR

Bits Description

ADDR Specifies a 24-bit program memory address for “function”

RELADDR Specifies a 24-bit, two’s-complement value added to the current PC value to gen-
erate the branch address

Type 25: Cjump/Rframe

8-84 ADSP-2136x SHARC Processor Programming Reference

Type 25c Opcode (RFRAME)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

0001 1001 0000 0000 0000 0000

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 0000 0000 0000 0000 0000

ADSP-2136x SHARC Processor Programming Reference 9-1

9 COMPUTATIONS REFERENCE

This chapter describes each compute operation in detail, including its
assembly language syntax and opcode field. Compute operations execute
in the multiplier, the ALU, and the shifter.

Compute Field
The 23-bit compute field is a mini instruction within the ADSP-21xxx
instruction. You can specify a value in this field for a variety of compute
operations, which include the following.

• Single-function operations involve a single computation unit.

• Multifunction operations specify parallel operation of the multi-
plier and the ALU or two operations in the ALU.

• The MR register transfer is a special type of compute operation used
to access the fixed-point accumulator in the multiplier.

For each operation, the assembly language syntax, the function, and the
opcode format and contents are specified. For an explanation of the nota-
tion and abbreviations, see “Instruction Set Quick Reference” in
Appendix A, Instruction Set Quick Reference.

Compute Field

9-2 ADSP-2136x SHARC Processor Programming Reference

In single-function operations, the compute field of a single-function oper-
ation is made up of the following bit fields.

The compute operation (Opcode) is executed in the computation unit (CU).
The x operand and y operand are input from data registers (Rx and Ry).
The compute result goes to a data register (Rn). Note that in some shifter
operations, the result register (Rn) serves as a result destination and as
source for a third input operand.

The available compute operations (Opcode) appear in Table 9-1 on
page 9-3, Table 9-2 on page 9-4, Table 9-3 on page 9-51, Table 9-4 on
page 9-52, and Table 9-8 on page 9-63. These tables are organized by
computation unit: “ALU Operations” on page 9-3, “Multiplier Opera-
tions” on page 9-50, and “Shifter Operations” on page 9-62. Following
each table, each compute operation is described in detail.

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CU Opcode Rn Rx Ry

Bits Description

CU Specifies the computation unit for the compute operation, where: 00=ALU,
01=Multiplier, and 10=Shifter

Opcode Specifies the compute operation

Rn Specifies register for the compute result

Rx Specifies register for the compute’s x operand

Ry Specifies register for the compute’s y operand

ADSP-2136x SHARC Processor Programming Reference 9-3

Computations Reference

ALU Operations
This section describes the ALU operations. Table 9-1 and Table 9-2 on
page 9-4 summarize the syntax and opcodes for the fixed-point and float-
ing-point ALU operations, respectively.

ALU Fixed-Point Operations

Table 9-1. Fixed-Point ALU Operations

Syntax Opcode Reference Page

Rn = Rx + Ry 0000 0001 on page 9-6

Rn = Rx – Ry 0000 0010 on page 9-7

Rn = Rx + Ry + CI 0000 0101 on page 9-8

Rn = Rx – Ry + CI – 1 0000 0110 on page 9-9

Rn = (Rx + Ry)/2 0000 1001 on page 9-10

COMP(Rx, Ry) 0000 1010 on page 9-11

COMPU(Rx, Ry) 0000 1011 on page 9-12

Rn = Rx + CI 0010 0101 on page 9-13

Rn = Rx + CI – 1 0010 0110 on page 9-14

Rn = Rx + 1 0010 1001 on page 9-15

Rn = Rx – 1 0010 1010 on page 9-16

Rn = – Rx 0010 0010 on page 9-17

Rn = ABS Rx 0011 0000 on page 9-18

Rn = PASS Rx 0010 0001 on page 9-19

Rn = Rx AND Ry 0100 0000 on page 9-20

Rn = Rx OR Ry 0100 0001 on page 9-21

Rn = Rx XOR Ry 0100 0010 on page 9-22

Rn = NOT Rx 0100 0011 on page 9-23

ALU Operations

9-4 ADSP-2136x SHARC Processor Programming Reference

ALU Floating-Point Operations

Rn = MIN(Rx, Ry) 0110 0001 on page 9-24

Rn = MAX(Rx, Ry) 0110 0010 on page 9-25

Rn = CLIP Rx BY Ry 0110 0011 on page 9-26

Table 9-2. Floating-Point ALU Operations

Syntax Opcode Reference Page

Fn = Fx + Fy 1000 0001 on page 9-27

Fn = Fx – Fy 1000 0010 on page 9-28

Fn = ABS (Fx + Fy) 1001 0001 on page 9-29

Fn = ABS (Fx – Fy) 1001 0010 on page 9-30

Fn = (Fx + Fy)/2 1000 1001 on page 9-31

Fn = COMP(Fx, Fy) 1000 1010 on page 9-32

Fn = –Fx 1010 0010 on page 9-33

Fn = ABS Fx 1011 0000 on page 9-34

Fn = PASS Fx 1010 0001 on page 9-35

Fn = RND Fx 1010 0101 on page 9-36

Fn = SCALB Fx BY Ry 1011 1101 on page 9-37

Rn = MANT Fx 1010 1101 on page 9-38

Rn = LOGB Fx 1100 0001 on page 9-39

Rn = FIX Fx BY Ry 1101 1001 on page 9-40

Rn = FIX Fx 1100 1001 on page 9-40

Rn = TRUNC Fx BY Ry 1101 1101 on page 9-40

Rn = TRUNC Fx 1100 1101 on page 9-40

Table 9-1. Fixed-Point ALU Operations (Cont’d)

Syntax Opcode Reference Page

ADSP-2136x SHARC Processor Programming Reference 9-5

Computations Reference

Fn = FLOAT Rx BY Ry 1101 1010 on page 9-42

Fn = FLOAT Rx 1100 1010 on page 9-42

Fn = RECIPS Fx 1100 0100 on page 9-43

Fn = RSQRTS Fx 1100 0101 on page 9-45

Fn = Fx COPYSIGN Fy 1110 0000 on page 9-47

Fn = MIN(Fx, Fy) 1110 0001 on page 9-48

Fn = MAX(Fx, Fy) 1110 0010 on page 9-49

Fn = CLIP Fx BY Fy 1110 0011 on page 9-50

Table 9-2. Floating-Point ALU Operations (Cont’d)

Syntax Opcode Reference Page

ALU Operations

9-6 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx + Ry

Function

Adds the fixed-point fields in registers Rx and Ry. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-7

Computations Reference

Rn = Rx – Ry

Function

Subtracts the fixed-point field in register Ry from the fixed-point field in
register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the maxi-
mum positive number (0x7FFF FFFF), and negative overflows return the
minimum negative number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

9-8 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx + Ry + CI

Function

Adds with carry (AC from ASTAT) the fixed-point fields in registers Rx and
Ry. The result is placed in the fixed-point field in register Rn. The float-
ing-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the maxi-
mum positive number (0x7FFF FFFF), and negative overflows return the
minimum negative number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-9

Computations Reference

Rn = Rx – Ry + CI – 1

Function

Subtracts with borrow (AC – 1 from ASTAT) the fixed-point field in register
Ry from the fixed-point field in register Rx. The result is placed in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s. In saturation mode (the ALU saturation mode bit in MODE1
set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

9-10 ADSP-2136x SHARC Processor Programming Reference

Rn = (Rx + Ry)/2

Function

Adds the fixed-point fields in registers Rx and Ry and divides the result by
2. The result is placed in the fixed-point field in register Rn. The float-
ing-point extension field in Rn is set to all 0s. Rounding is to nearest
(IEEE) or by truncation, as defined by the rounding mode bit in the MODE1
register.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-11

Computations Reference

COMP(Rx, Ry)

Function

Compares the fixed-point field in register Rx with the fixed-point field in
register Ry. Sets the AZ flag if the two operands are equal, and the AN flag if
the operand in register Rx is smaller than the operand in register Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24–31. These bits are shifted right (bit 24 is overwrit-
ten) whenever a fixed-point or floating-point compare instruction is
executed. The MSB of ASTAT is set if the X operand is greater than the Y
operand (its value is the AND of AZ and AN); it is otherwise cleared.

Status Flags

AZ Set if the operands in registers Rx and Ry are equal, otherwise cleared

AU Cleared

AN Set if the operand in the Rx register is smaller than the operand in the Ry reg-
ister, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

9-12 ADSP-2136x SHARC Processor Programming Reference

COMPU(Rx, Ry)

Function

Compares the fixed-point field in register Rx with the fixed-point field in
register Ry, Sets the AZ flag if the two operands are equal, and the AN flag if
the operand in register Rx is smaller than the operand in register Ry. This
operation performs a magnitude comparison of the fixed-point contents of
Rx and Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24–31. These bits are shifted right (bit 24 is overwrit-
ten) whenever a fixed-point or floating-point compare instruction is
executed. The MSB of ASTAT is set if the X operand is greater than the Y
operand (its value is the AND of AZ and AN); it is otherwise cleared.

Status Flags

AZ Is set if the operands in registers Rx and Ry are equal, otherwise cleared

AU Is cleared

AN Is set if the operand in the Rx register is smaller than the operand in the Ry
register, otherwise cleared

AV Is cleared

AC Is cleared

AS Is cleared

AI Is cleared

ADSP-2136x SHARC Processor Programming Reference 9-13

Computations Reference

Rn = Rx + CI

Function

Adds the fixed-point field in register Rx with the carry flag from the ASTAT
register (AC). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

9-14 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx + CI – 1

Function

Adds the fixed-point field in register Rx with the borrow from the ASTAT
register (AC – 1). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-15

Computations Reference

Rn = Rx + 1

Function

Increments the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), overflow causes the maximum positive number (0x7FFF FFFF)
to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder, stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

9-16 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx – 1

Function

Decrements the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in
Rn is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), underflow causes the minimum negative number
(0x8000 0000) to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-17

Computations Reference

Rn = –Rx

Function

Negates the fixed-point operand in Rx by two’s-complement. The result is
placed in the fixed-point field in register Rn. The floating-point extension
field in Rn is set to all 0s. Negation of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU satura-
tion mode bit in MODE1 set), overflow causes the maximum positive
number (0x7FFF FFFF) to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s

AU Cleared

AN Set if the most significant output bit is 1

AV Set if the XOR of the carries of the two most significant adder stages is 1

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Cleared

AI Cleared

ALU Operations

9-18 ADSP-2136x SHARC Processor Programming Reference

Rn = ABS Rx

Function

Determines the absolute value of the fixed-point operand in Rx. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s. The ABS of the minimum negative
number (0x8000 0000) causes an overflow. In saturation mode (the ALU
saturation mode bit in MODE1 set), overflow causes the maximum positive
number (0x7FFF FFFF) to be returned.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages is 1,
otherwise cleared

AC Set if the carry from the most significant adder stage is 1, otherwise cleared

AS Set if the fixed-point operand in Rx is negative, otherwise cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-19

Computations Reference

Rn = PASS Rx

Function

Passes the fixed-point operand in Rx through the ALU to the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

9-20 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx AND Ry

Function

Logically ANDs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-21

Computations Reference

Rn = Rx OR Ry

Function

Logically ORs the fixed-point operands in Rx and Ry. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is
set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

9-22 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx XOR Ry

Function

Logically XORs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-23

Computations Reference

Rn = NOT Rx

Function

Logically complements the fixed-point operand in Rx. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is
set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

9-24 ADSP-2136x SHARC Processor Programming Reference

Rn = MIN(Rx, Ry)

Function

Returns the smaller of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-25

Computations Reference

Rn = MAX(Rx, Ry)

Function

Returns the larger of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ALU Operations

9-26 ADSP-2136x SHARC Processor Programming Reference

Rn = CLIP Rx BY Ry

Function

Returns the fixed-point operand in Rx if the absolute value of the operand
in Rx is less than the absolute value of the fixed-point operand in Ry. Oth-
erwise, returns |Ry| if Rx is positive, and –|Ry| if Rx is negative. The result
is placed in the fixed-point field in register Rn. The floating-point exten-
sion field in Rn is set to all 0s.

Status Flags

AZ Set if the fixed-point output is all 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-27

Computations Reference

Fn = Fx + Fy

Function

Adds the floating-point operands in registers Fx and Fy. The normalized
result is placed in register Fn. Rounding is to nearest (IEEE) or by trunca-
tion, to a 32-bit or to a 40-bit boundary, as defined by the rounding mode
and rounding boundary bits in MODE1. Post-rounded overflow returns
±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±zero. Denormal inputs are flushed to
±zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
infinities, otherwise cleared

ALU Operations

9-28 ADSP-2136x SHARC Processor Programming Reference

Fn = Fx – Fy

Function

Subtracts the floating-point operand in register Fy from the floating-point
operand in register Fx. The normalized result is placed in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODE1. Post-rounded overflow returns ±infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). Post-rounded denormal returns ±zero.
Denormal inputs are flushed to ±zero. A NAN input returns an all 1s
result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed infini-
ties, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-29

Computations Reference

Fn = ABS (Fx + Fy)

Function

Adds the floating-point operands in registers Fx and Fy, and places the
absolute value of the normalized result in register Fn. Rounding is to near-
est (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined
by the rounding mode and rounding boundary bits in MODE1.

Post-rounded overflow returns +infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +zero.
Denormal inputs are flushed to ±zero. A NAN input returns an all 1s
result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed
infinities, otherwise cleared

ALU Operations

9-30 ADSP-2136x SHARC Processor Programming Reference

Fn = ABS (Fx – Fy)

Function

Subtracts the floating-point operand in Fy from the floating-point oper-
and in Fx and places the absolute value of the normalized result in register
Fn. Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a
40-bit boundary, as defined by the rounding mode and rounding bound-
ary bits in MODE1. Post-rounded overflow returns +infinity
(round-to-nearest) or +NORM.MAX (round-to-zero). Post-rounded
denormal returns +zero. Denormal inputs are flushed to ±zero. A NAN
input returns an all 1s result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are like-signed infini-
ties, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-31

Computations Reference

Fn = (Fx + Fy)/2

Function

Adds the floating-point operands in registers Fx and Fy and divides the
result by 2, by decrementing the exponent of the sum before rounding.
The normalized result is placed in register Fn. Rounding is to nearest
(IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by
the rounding mode and rounding boundary bits in MODE1. Post-rounded
overflow returns ±infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero). Post-rounded denormal results return ±zero. A denormal
input is flushed to ±zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the post-rounded result is a denormal (unbiased exponent < –126) or zero, oth-
erwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), otherwise
cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, or if they are opposite-signed infinities,
otherwise cleared

ALU Operations

9-32 ADSP-2136x SHARC Processor Programming Reference

COMP(Fx, Fy)

Function

Compares the floating-point operand in register Fx with the float-
ing-point operand in register Fy. Sets the AZ flag if the two operands are
equal, and the AN flag if the operand in register Fx is smaller than the oper-
and in register Fy.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24-31. These bits are shifted right (bit 24 is overwritten)
whenever a fixed-point or floating-point compare instruction is executed.
The MSB of ASTAT is set if the X operand is greater than the Y operand (its
value is the AND of AZ and AN); it is otherwise cleared.

Status Flags

AZ Set if the operands in registers Fx and Fy are equal, otherwise cleared

AU Cleared

AN Set if the operand in the Fx register is smaller than the operand in the Fy reg-
ister, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-33

Computations Reference

Fn = –Fx

Function

Complements the sign bit of the floating-point operand in Fx. The com-
plemented result is placed in register Fn. A denormal input is flushed to
±zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is a ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ALU Operations

9-34 ADSP-2136x SHARC Processor Programming Reference

Fn = ABS Fx

Function

Returns the absolute value of the floating-point operand in register Fx by
setting the sign bit of the operand to 0. Denormal inputs are flushed to
+zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is +zero, otherwise cleared

AU Cleared

AN Cleared

AV Cleared

AC Cleared

AS Set if the input operand is negative, otherwise cleared

AI Set if the input operand is a NAN, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-35

Computations Reference

Fn = PASS Fx

Function

Passes the floating-point operand in Fx through the ALU to the float-
ing-point field in register Fn. Denormal inputs are flushed to ±zero. A
NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is a ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ALU Operations

9-36 ADSP-2136x SHARC Processor Programming Reference

Fn = RND Fx

Function

Rounds the floating-point operand in register Fx to a 32 bit boundary.
Rounding is to nearest (IEEE) or by truncation, as defined by the round-
ing mode bit in MODE1. Post-rounded overflow returns ±infinity
(round-to-nearest) or ±NORM.MAX (round-to-zero). A denormal input
is flushed to ±zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the result operand is a ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the post-rounded result overflows (unbiased exponent > +127), other-
wise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-37

Computations Reference

Fn = SCALB Fx BY Ry

Function

Scales the exponent of the floating-point operand in Fx by adding to it the
fixed-point two’s-complement integer in Ry. The scaled floating-point
result is placed in register Fn. Overflow returns ±infinity (round-to-near-
est) or ±NORM.MAX (round-to-zero). Denormal returns ±zero.
Denormal inputs are flushed to ±zero. A NAN input returns an all 1s
result.

Status Flags

AZ Set if the result is a denormal (unbiased exponent < –126) or zero, otherwise
cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the result overflows (unbiased exponent > +127), otherwise cleared

AC Cleared

AS Cleared

AI Set if the input is a NAN, an otherwise cleared

ALU Operations

9-38 ADSP-2136x SHARC Processor Programming Reference

Rn = MANT Fx

Function

Extracts the mantissa (fraction bits with explicit hidden bit, excluding the
sign bit) from the floating-point operand in Fx. The unsigned-magnitude
result is left-justified (1.31 format) in the fixed-point field in Rn. Round-
ing modes are ignored and no rounding is performed because all results
are inherently exact. Denormal inputs are flushed to ±zero. A NAN or an
infinity input returns an all 1s result (–1 in signed fixed-point format).

Status Flags

AZ Set if the result is zero, otherwise cleared

AU Cleared

AN Cleared

AV Cleared

AC Cleared

AS Set if the input is negative, otherwise cleared

AI Set if the input operands is a NAN or an infinity, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-39

Computations Reference

Rn = LOGB Fx

Function

Converts the exponent of the floating-point operand in register Fx to an
unbiased two’s-complement fixed-point integer. The result is placed in the
fixed-point field in register Rn. Unbiasing is done by subtracting 127
from the floating-point exponent in Fx. If saturation mode is not set, a
±infinity input returns a floating-point +infinity and a ±zero input returns
a floating-point –infinity. If saturation mode is set, a ±infinity input
returns the maximum positive value (0x7FFF FFFF), and a ±zero input
returns the maximum negative value (0x8000 0000). Denormal inputs are
flushed to ±zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the fixed-point result is zero, otherwise cleared

AU Cleared

AN Set if the result is negative, otherwise cleared

AV Set if the input operand is an infinity or a zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input is a NAN, otherwise cleared

ALU Operations

9-40 ADSP-2136x SHARC Processor Programming Reference

Rn = FIX Fx
Rn = TRUNC Fx
Rn = FIX Fx BY Ry
Rn = TRUNC Fx BY Ry

Function

Converts the floating-point operand in Fx to a two’s-complement 32-bit
fixed-point integer result.

If the MODE1 register TRUNC bit=1, the Fix operation truncates the mantissa
towards –infinity. If the TRUNC bit=0, the Fix operation rounds the man-
tissa towards the nearest integer.

The trunc operation always truncates toward 0. The TRUNC bit does not
influence operation of the trunc instruction.

If a scaling factor (Ry) is specified, the fixed-point two’s-complement inte-
ger in Ry is added to the exponent of the floating-point operand in Fx
before the conversion.

The result of the conversion is right-justified (32.0 format) in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s.

In saturation mode (the ALU saturation mode bit in MODE1 set) positive
overflows and +infinity return the maximum positive number
(0x7FFF FFFF), and negative overflows and –infinity return the mini-
mum negative number (0x8000 0000).

For the Fix operation, rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode bit in MODE1. A NAN input returns a float-
ing-point all 1s result. If saturation mode is not set, an infinity input or a
result that overflows returns a floating-point result of all 1s.

ADSP-2136x SHARC Processor Programming Reference 9-41

Computations Reference

All positive underflows return zero. Negative underflows that are
rounded-to-nearest return zero, and negative underflows that are rounded
by truncation return –1 (0xFF FFFF FF00).

Status Flags

AZ Set if the fixed-point result is zero, otherwise cleared

AU Set if the pre-rounded result is a denormal, otherwise cleared

AN Set if the fixed-point result is negative, otherwise cleared

AV Set if the conversion causes the floating-point mantissa to be shifted left, that
is, if the floating-point exponent + scale bias is >157 (127 + 31 – 1) or if the
input is ±infinity, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN or, when saturation mode is not set, either
input is an infinity or the result overflows, otherwise cleared

ALU Operations

9-42 ADSP-2136x SHARC Processor Programming Reference

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx

Function

Converts the fixed-point operand in Rx to a floating-point result. If a scal-
ing factor (Ry) is specified, the fixed-point two’s-complement integer in
Ry is added to the exponent of the floating-point result. The final result is
placed in register Fn. Rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode, to a 40-bit boundary, regardless of the val-
ues of the rounding boundary bits in MODE1. The exponent scale bias may
cause a floating-point overflow or a floating-point underflow. Overflow
generates a return of ±infinity (round-to-nearest) or ±NORM.MAX
(round-to-zero); underflow generates a return of ±zero.

Status Flags

AZ Set if the result is a denormal (unbiased exponent < –126) or zero, otherwise cleared

AU Set if the post-rounded result is a denormal, otherwise cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Set if the result overflows (unbiased exponent >127)

AC Cleared

AS Cleared

AI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-43

Computations Reference

Fn = RECIPS Fx

Function

Creates an 8-bit accurate seed for 1/Fx, the reciprocal of Fx. The mantissa
of the seed is determined from a ROM table using the 7 MSBs (excluding
the hidden bit) of the Fx mantissa as an index. The unbiased exponent of
the seed is calculated as the two’s-complement of the unbiased Fx expo-
nent, decremented by one; that is, if e is the unbiased exponent of Fx,
then the unbiased exponent of Fn = –e – 1. The sign of the seed is the sign
of the input. A ±zero returns ±infinity and sets the overflow flag. If the
unbiased exponent of Fx is greater than +125, the result is ±zero. A NAN
input returns an all 1s result.

The following code performs floating-point division using an iterative
convergence algorithm.1 The result is accurate to one LSB in whichever
format mode, 32-bit or 40-bit, is set. The following inputs are required:
F0=numerator, F12=denominator, F11=2.0. The quotient is returned in
F0. (The two highlighted instructions can be removed if only a ±1 LSB
accurate single-precision result is necessary.)

F0=RECIPS F12, F7=F0; {Get 8 bit seed R0=1/D}

F12=F0*F12; {D' = D*R0}

F7=F0*F7, F0=F11-F12; {F0=R1=2-D', F7=N*R0}

F12=F0*F12; {F12=D'-D'*R1}

F7=F0*F7, F0=F11-F12; {F7=N*R0*R1, F0=R2=2-D'}

F12=F0*F12; {F12=D'=D'*R2}

F7=F0*F7, F0=F11-F12; {F7=N*R0*R1*R2, F0=R3=2-D'}

F0=F0*F7; {F7=N*R0*R1*R2*R3}

To make this code segment a subroutine, add an RTS(DB) clause to the
third-to-last instruction.

1 Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 284.

ALU Operations

9-44 ADSP-2136x SHARC Processor Programming Reference

Status Flags

AZ Set if the floating-point result is ±zero (unbiased exponent of Fx is greater
than +125), otherwise cleared

AU Cleared

AN Set if the input operand is negative, otherwise cleared

AV Set if the input operand is ±zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is a NAN, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-45

Computations Reference

Fn = RSQRTS Fx

Function

Creates a 4-bit accurate seed for 1/(Fx)½, the reciprocal square root of Fx.

The mantissa of the seed is determined from a ROM table, using the LSB
of the biased exponent of Fx concatenated with the six MSBs (excluding
the hidden bit of the mantissa) of Fx’s index.

The unbiased exponent of the seed is calculated as the two’s-complement
of the unbiased Fx exponent, shifted right by one bit and decremented by
one; that is, if e is the unbiased exponent of Fx, then the unbiased expo-
nent of Fn = –INT[e/2] – 1.

The sign of the seed is the sign of the input. The input ±zero returns
±infinity and sets the overflow flag. The input +infinity returns +zero. A
NAN input or a negative nonzero input returns a result of all 1s.

The following code calculates a floating-point reciprocal square root
(1/(x)½) using a Newton-Raphson iteration algorithm.1 The result is accu-
rate to one LSB in whichever format mode, 32-bit or 40-bit, is set.

To calculate the square root, simply multiply the result by the original
input. The following inputs are required: F0=input, F8=3.0, F1=0.5. The
result is returned in F4. (The four highlighted instructions can be
removed if only a ±1 LSB accurate single-precision result is necessary.)

F4=RSQRTS F0; {Fetch 4-bit seed}

F12=F4*F4; {F12=X0^2}

F12=F12*F0; {F12=C*X0^2}

F4=F1*F4, F12=F8-F12; {F4=.5*X0, F12=3-C*X0^2}

F4=F4*F12; {F4=X1=.5*X0(3-C*X0^2)}

F12=F4*F4; {F12=X1^2}

F12=F12*F0; {F12=C*X1^2}

1 Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 278.

ALU Operations

9-46 ADSP-2136x SHARC Processor Programming Reference

F4=F1*F4, F12=F8-F12; {F4=.5*X1, F12=3-C*X1^2}

F4=F4*F12; {F4=X2=.5*X1(3-C*X1^2)}

F12=F4*F4; {F12=X2^2}

F12=F12*F0; {F12=C*X2^2}

F4=F1*F4, F12=F8-F12; {F4=.5*X2, F12=3-C*X2^2}

F4=F4*F12; {F4=X3=.5*X2(3-C*X2^2)}

Note that this code segment can be made into a subroutine by adding an
RTS(DB) clause to the third-to-last instruction.

Status Flags

AZ Set if the floating-point result is +zero (Fx = +infinity), otherwise cleared

AU Cleared

AN Set if the input operand is –zero, otherwise cleared

AV Set if the input operand is ±zero, otherwise cleared

AC Cleared

AS Cleared

AI Set if the input operand is negative and nonzero, or a NAN, otherwise
cleared

ADSP-2136x SHARC Processor Programming Reference 9-47

Computations Reference

Fn = Fx COPYSIGN Fy

Function

Copies the sign of the floating-point operand in register Fy to the float-
ing-point operand from register Fx without changing the exponent or the
mantissa. The result is placed in register Fn. A denormal input is flushed
to ±zero. A NAN input returns an all 1s result.

Status Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ALU Operations

9-48 ADSP-2136x SHARC Processor Programming Reference

Fn = MIN(Fx, Fy)

Function

Returns the smaller of the floating-point operands in register Fx and Fy. A
NAN input returns an all 1s result. The MIN of +zero and –zero returns
 –zero. Denormal inputs are flushed to ±zero.

Status Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-49

Computations Reference

Fn = MAX(Fx, Fy)

Function

Returns the larger of the floating-point operands in registers Fx and Fy. A
NAN input returns an all 1s result. The MAX of +zero and –zero returns
+zero. Denormal inputs are flushed to ±zero.

Status Flags

AZ Set if the floating-point result is ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

Multiplier Operations

9-50 ADSP-2136x SHARC Processor Programming Reference

Fn = CLIP Fx BY Fy

Function

Returns the floating-point operand in Fx if the absolute value of the oper-
and in Fx is less than the absolute value of the floating-point operand in
Fy. Else, returns | Fy | if Fx is positive, and –| Fy | if Fx is negative. A
NAN input returns an all 1s result. Denormal inputs are flushed to ±zero.

Status Flags

Multiplier Operations
This section describes the multiplier operations. These tables use the fol-
lowing symbols to indicate location of operands and other features:

• y = y-input (1 = signed, 0 = unsigned)

• x = x-input (1 = signed, 0 = unsigned)

• f = format (1 = fractional, 0 = integer)

• r = rounding (1 = yes, 0 = no)

AZ Set if the floating-point result is ±zero, otherwise cleared

AU Cleared

AN Set if the floating-point result is negative, otherwise cleared

AV Cleared

AC Cleared

AS Cleared

AI Set if either of the input operands is a NAN, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-51

Computations Reference

Multiplier Fixed-Point Operations
Table 9-3 summarizes the syntax and opcodes for the fixed-point multi-
plier operations.

Table 9-3. Multiplier Fixed-Point Operations

Syntax Opcode Reference Page

Rn = Rx * Ry mod2 01yx f00r on page 9-54

MRF = Rx * Ry mod2 01yx f10r on page 9-54

MRB = Rx * Ry mod2 01yx f11r on page 9-54

Rn = MRF + Rx * Ry mod2 10yx f00r on page 9-55

Rn = MRB + Rx * Ry mod2 10yx f01r on page 9-55

MRF = MRF + Rx * Ry mod2 10yx f10r on page 9-55

MRB = MRB + Rx * Ry mod2 10yx f11r on page 9-55

Rn = MRF – Rx * Ry mod2 11yx f00r on page 9-56

Rn = MRB – Rx * Ry mod2 11yx f01r on page 9-56

MRF = MRF – Rx * Ry mod2 11yx f10r on page 9-56

MRB = MRB – Rx * Ry mod2 11yx f11r on page 9-56

Rn = SAT MRF mod1 0000 f00x on page 9-57

Rn = SAT MRB mod1 0000 f01x on page 9-57

MRF = SAT MRF mod1 0000 f10x on page 9-57

MRB = SAT MRB mod1 0000 f11x on page 9-57

Rn = RND MRF mod1 0001 100x on page 9-58

Rn = RND MRB mod1 0001 101x on page 9-58

MRF = RND MRF mod1 0001 110x on page 9-58

MRB = RND MRB mod1 0001 111x on page 9-58

MRF = 0 0001 0100 on page 9-59

MRB = 0 0001 0110r on page 9-59

Multiplier Operations

9-52 ADSP-2136x SHARC Processor Programming Reference

Multiplier Floating-Point Operations
Table 9-4 summarizes the syntax and opcodes for the floating-point mul-
tiplier operations.

Mod1 and Mod2 Modifiers
Mod2 in Table 9-3 on page 9-51 is an optional modifier. It is enclosed in
parentheses and consists of three or four letters that indicate whether:

• The x-input is signed (S) or unsigned (U).

• The y-input is signed or unsigned.

• The inputs are in integer (I) or fractional (F) format.

• The result written to the register file will be rounded-to-nearest
(R).

Table 9-5 lists the options for mod2 and the corresponding opcode values.

MR = Rn on page 9-60

Rn = MR on page 9-60

Table 9-4. Multiplier Floating-Point Operations

Syntax Opcode Reference Page

Fn = Fx*Fy 0011 0000 on page 9-62

Table 9-3. Multiplier Fixed-Point Operations (Cont’d)

Syntax Opcode Reference Page

ADSP-2136x SHARC Processor Programming Reference 9-53

Computations Reference

Similarly, mod1 in Table 9-3 on page 9-51 is an optional modifier,
enclosed in parentheses, consisting of two letters that indicate whether the
input is signed (S) or unsigned (U) and whether the input is in integer (I)
or fractional (F) format. The options for mod1 and the corresponding
opcode values are listed in Table 9-6.

Table 9-5. Mod2 Options and Opcodes

Option Opcode

(SSI) _ _11 0_ _0

(SUI) _ _01 0_ _0

(USI) _ _10 0_ _0

(UUI) _ _00 0_ _0

(SSF) _ _11 1_ _0

(SUF) _ _01 1_ _0

(USF) _ _10 1_ _0

(UUF) _ _00 1_ _0

(SSFR) _ _11 1_ _1

(SUFR) _ _01 1_ _1

(USFR) _ _10 1_ _1

(UUFR) _ _00 1_ _1

Table 9-6. Mod1 Options and Opcodes

Option Opcode

(SI) (for SAT only) _ _ _ _ 0 _ _ 1

(UI) (for SAT only) _ _ _ _ 0 _ _ 0

(SF) _ _ _ _ 1 _ _ 1

(UF) _ _ _ _ 1 _ _ 0

Multiplier Operations

9-54 ADSP-2136x SHARC Processor Programming Reference

Rn = Rx * Ry mod2
MRF = Rx * Ry mod2
MRB Rx * Ry mod2

Function

Multiplies the fixed-point fields in registers Rx and Ry.

If rounding is specified (fractional data only), the result is rounded. The
result is placed either in the fixed-point field in register Rn or one of the
MR accumulation registers.

If Rn is specified, only the portion of the result that has the same format
as the inputs is transferred (bits 31–0 for integers, bits 63–32 for frac-
tional). The floating-point extension field in Rn is set to all 0s. If MRF or
MRB is specified, the entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer results
do not underflow

MI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-55

Computations Reference

Rn = MRF + Rx * Ry mod2
Rn = MRB + Rx * Ry mod2
MRF = MRF + Rx * Ry mod2
MRB = MRB + Rx * Ry mod2

Function

Multiplies the fixed-point fields in registers Rx and Ry, and adds the prod-
uct to the specified MR register value. If rounding is specified (fractional
data only), the result is rounded. The result is placed either in the
fixed-point field in register Rn or one of the MR accumulation registers,
which must be the same MR register that provided the input. If Rn is speci-
fied, only the portion of the result that has the same format as the inputs is
transferred (bits 31–0 for integers, bits 63–32 for fractional). The float-
ing-point extension field in Rn is set to all 0s. If MRF or MRB is specified, the
entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer results
do not underflow

MI Cleared

Multiplier Operations

9-56 ADSP-2136x SHARC Processor Programming Reference

Rn = MRF – Rx * Ry mod2
Rn = MRB – Rx * Ry mod2
MRF = MRF – Rx * Ry mod2
MRB = MRB – Rx * Ry mod2

Function

Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the
product from the specified MR register value. If rounding is specified (frac-
tional data only), the result is rounded. The result is placed either in the
fixed-point field in register Rn or in one of the MR accumulation registers,
which must be the same MR register that provided the input. If Rn is speci-
fied, only the portion of the result that has the same format as the inputs is
transferred (bits 31–0 for integers, bits 63–32 for fractional). The float-
ing-point extension field in Rn is set to all 0s. If MRF or MRB is specified, the
entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer results
do not underflow

MI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-57

Computations Reference

Rn = SAT MRF mod1
Rn = SAT MRB mod1
MRF = SAT MRF mod1
MRB = SAT MRB mod1

Function

If the value of the specified MR register is greater than the maximum value
for the specified data format, the multiplier sets the result to the maxi-
mum value. Otherwise, the MR value is unaffected. The result is placed
either in the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31–0 for integers, bits 63–32 for fractional).
The floating-point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Cleared

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer results
do not underflow

MI Cleared

Multiplier Operations

9-58 ADSP-2136x SHARC Processor Programming Reference

Rn = RND MRF mod1
Rn = RND MRB mod1
MRF = RND MRF mod1
MRB = RND MRB mod1

Function

Rounds the specified MR value to nearest at bit 32 (the MR1–MR0 bound-
ary). The result is placed either in the fixed-point field in register Rn or
one of the MR accumulation registers, which must be the same MR register
that provided the input. If Rn is specified, only the portion of the result
that has the same format as the inputs is transferred (bits 31–0 for inte-
gers, bits 63–32 for fractional). The floating-point extension field in Rn is
set to all 0s. If MRF or MRB is specified, the entire 80-bit result is placed in
MRF or MRB.

Status Flags

MN Set if the result is negative, otherwise cleared

MV Set if the upper bits are not all zeros (signed or unsigned result) or ones (signed
result); number of upper bits depends on format; for a signed result,
fractional=33, integer=49; for an unsigned result, fractional=32, integer=48

MU Set if the upper 48 bits of a fractional result are all zeros (signed or unsigned
result) or ones (signed result) and the lower 32 bits are not all zeros; integer results
do not underflow

MI Cleared

ADSP-2136x SHARC Processor Programming Reference 9-59

Computations Reference

MRF = 0
MRB = 0

Function

Sets the value of the specified MR register to zero. All 80 bits (MR2, MR1, MR0)
are cleared.

Status Flags

MN Not Affected

MV Not Affected

MU Not Affected

MI Not Affected

Multiplier Operations

9-60 ADSP-2136x SHARC Processor Programming Reference

MRxF/B = Rn/Rn = MRxF/B

Function

A transfer to an MR register places the fixed-point field of register Rn in the
specified MR register. The floating-point extension field in Rn is ignored. A
transfer from an MR register places the specified MR register in the
fixed-point field in register Rn. The floating-point extension field in Rn is
set to all 0s.

Syntax Variations

MR0F = Rn Rn = MR0F

MR1F = Rn Rn = MR1F

MR2F = Rn Rn = MR2F

MR0B = Rn Rn = MR0B

MR1B = Rn Rn = MR1B

MR2B = Rn Rn = MR2B

Compute Field

Table 9-7 indicates how Ai specifies the MR register, and Rk specifies the
data register. The T determines the direction of the transfer (0=to register
file, 1=to MR register).

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100000 T Ai Rk

Table 9-7. Ai Values and MR Registers

Ai MR Register

0000 MR0F

0001 MR1F

ADSP-2136x SHARC Processor Programming Reference 9-61

Computations Reference

Status Flags

0010 MR2F

0100 MR0B

0101 MR1B

0110 MR2B

MN Not Affected

MV Not Affected

MU Not Affected

MI Not Affected

Table 9-7. Ai Values and MR Registers (Cont’d)

Ai MR Register

Shifter Operations

9-62 ADSP-2136x SHARC Processor Programming Reference

Fn = Fx * Fy

Function

Multiplies the floating-point operands in registers Fx and Fy and places
the result in the register Fn.

Status Flags

Shifter Operations
Shifter operations are described in this section. Table 9-8 lists the syntax
and opcodes for the shifter operations. The succeeding pages provide
detailed descriptions of each operation. Some of the instructions in
Table 9-8 accept the following modifiers.

• (SE) = Sign extension of deposited or extracted field

• (EX) = Extended exponent extract

Shifter Opcodes
The shifter operates on the register file’s 32-bit fixed-point fields
(bits 38–9). Two-input shifter operations can take their y input from the
register file or from immediate data provided in the instruction. Either
form uses the same opcode. However, the latter case, called an immediate
shift or shifter immediate operation, is allowed only with instruction

MN Set if the result is negative, otherwise cleared

MV Set if the unbiased exponent of the result is greater than 127, otherwise cleared

MU Set if the unbiased exponent of the result is less than –126, otherwise cleared

MI Set if either input is a NAN or if the inputs are ±infinity and ±zero, otherwise
cleared

ADSP-2136x SHARC Processor Programming Reference 9-63

Computations Reference

type 6, which has an immediate data field in its opcode for this purpose.
All other instruction types must obtain the y input from the register file
when the compute operation is a two-input shifter operation.

Table 9-8. Shifter Operations

Syntax Opcode Reference Page

Rn = LSHIFT Rx BY Ry|<data8> 0000 0000 on page 9-64

Rn = Rn OR LSHIFT Rx BY Ry|<data8> 0010 0000 on page 9-65

Rn = ASHIFT Rx BY Ry|<data8> 0000 0100 on page 9-66

Rn = Rn OR ASHIFT Rx BY Ry|<data8> 0010 0100 on page 9-67

Rn = ROT Rx BY Ry|<data8> 0000 1000 on page 9-68

Rn = BCLR Rx BY Ry|<data8> 1100 0100 on page 9-69

Rn =BSET Rx BY Ry|<data8> 1100 0000 on page 9-70

Rn = BTGL Rx BY Ry|<data8> 1100 1000 on page 9-71

BTST Rx BY Ry|<data8> 1100 1100 on page 9-72

Rn = FDEP Rx BY Ry|<bit6>:<len6> 0100 0100 on page 9-73

Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6> 0110 0100 on page 9-75

Rn = FDEP Rx BY Ry|<bit6>:<len6> (SE) 0100 1100 on page 9-77

Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6>(SE) 0110 1100 on page 9-79

Rn = FEXT RX BY Ry|<bit6>:<len6> 0100 0000 on page 9-81

Rn = FEXT Rx BY Ry|<bit6>:<len6> (SE) 0100 1000 on page 9-83

Rn = EXP Rx 1000 0000 on page 9-85

Rn = EXP Rx (EX) 1000 0100 on page 9-86

Rn = LEFTZ Rx 1000 1000 on page 9-87

Rn = LEFTO Rx 1000 1100 on page 9-88

Rn = FPACK Fx 1001 0000 on page 9-89

Fn = FUNPACK Rx 1001 0100 on page 9-90

Shifter Operations

9-64 ADSP-2136x SHARC Processor Programming Reference

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8>

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The float-
ing-point extension field of Rn is set to all 0s. The shift values are
two’s-complement numbers. Positive values select a left shift, negative val-
ues select a right shift. The 8-bit immediate data can take values between
–128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale
right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted to the left by more than 0, otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-65

Computations Reference

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8>

Function

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all 0s. The shift values are two’s-complement numbers. Posi-
tive values select a left shift, negative values select a right shift. The 8-bit
immediate data can take values between –128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

Shifter Operations

9-66 ADSP-2136x SHARC Processor Programming Reference

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8>

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction.
The shifted result is placed in the fixed-point field of register Rn. The
floating-point extension field of Rn is set to all 0s. The shift values are
two’s-complement numbers. Positive values select a left shift, negative val-
ues select a right shift. The 8-bit immediate data can take values between
–128 and 127 inclusive, allowing for a shift of a 32-bit field from off-scale
right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-67

Computations Reference

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8>

Function

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction.
The shifted result is logically ORed with the fixed-point field of register
Rn and then written back to register Rn. The floating-point extension
field of Rn is set to all 0s. The shift values are two’s-complement numbers.
Positive values select a left shift, negative values select a right shift. The
8-bit immediate data can take values between –128 and 127 inclusive,
allowing for a shift of a 32-bit field from off-scale right to off-scale left.

Status Flags

SZ Set if the shifted result is zero, otherwise cleared

SV Set if the input is shifted left by more than 0, otherwise cleared

SS Cleared

Shifter Operations

9-68 ADSP-2136x SHARC Processor Programming Reference

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8>

Function

Rotates the fixed-point operand in register Rx by the 32-bit value in regis-
ter Ry or by the 8-bit immediate value in the instruction. The rotated
result is placed in the fixed-point field of register Rn. The floating-point
extension field of Rn is set to all 0s. The shift values are two’s-complement
numbers. Positive values select a rotate left; negative values select a rotate
right. The 8-bit immediate data can take values between –128 and 127
inclusive, allowing for a rotate of a 32-bit field from full right wrap
around to full left wrap around.

Status Flags

SZ Set if the rotated result is zero, otherwise cleared

SV Cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-69

Computations Reference

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8>

Function

Clears a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The position of the bit is the 32-bit value in register
Ry or the 8-bit immediate value in the instruction. The 8-bit immediate
data can take values between 31 and 0 inclusive, allowing for any bit
within a 32-bit field to be cleared. If the bit position value is greater than
31 or less than 0, no bits are cleared.

Status Flags

This compute operation affects a bit in a register file location.
There is also a bit manipulation instruction that affects one or
more bits in a system register. The Bit Clr instruction should not
be confused with the Bclr shifter operation. For more information
on Bit Clr, see “Type 18: System Register Bit Manipulation” on
page 8-72.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

Shifter Operations

9-70 ADSP-2136x SHARC Processor Programming Reference

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>

Function

Sets a bit in the fixed-point operand in register Rx. The result is placed in
the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry
or the 8-bit immediate value in the instruction. The 8-bit immediate data
can take values between 31 and 0 inclusive, allowing for any bit within a
32-bit field to be set. If the bit position value is greater than 31 or less
than 0, no bits are set.

Status Flags

This compute operation affects a bit in a register file location.
There is also a bit manipulation instruction that affects one or
more bits in a system register. This Bit Set instruction should not
be confused with the Bset shifter operation. For more information
on Bit Set, see “Type 18: System Register Bit Manipulation” on
page 8-72.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-71

Computations Reference

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8>

Function

Toggles a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field
of Rn is set to all 0s. The position of the bit is the 32-bit value in register
Ry or the 8-bit immediate value in the instruction. The 8-bit immediate
data can take values between 31 and 0 inclusive, allowing for any bit
within a 32-bit field to be toggled. If the bit position value is greater than
31 or less than 0, no bits are toggled.

Status Flags

This compute operation affects a bit in a register file location.
There is also a bit manipulation instruction that affects one or
more bits in a system register. This Bit Tgl instruction should not
be confused with the Btgl shifter operation. For more information
on Bit Tgl, see “Type 18: System Register Bit Manipulation” on
page 8-72.

SZ Set if the output operand is 0, otherwise cleared

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

Shifter Operations

9-72 ADSP-2136x SHARC Processor Programming Reference

BTST Rx BY Ry
BTST Rx BY <data8>

Function

Tests a bit in the fixed-point operand in register Rx. The SZ flag is set if
the bit is a 0 and cleared if the bit is a 1. The position of the bit is the
32-bit value in register Ry or the 8-bit immediate value in the instruction.
The 8-bit immediate data can take values between 31 and 0 inclusive,
allowing for any bit within a 32-bit field to be tested. If the bit position
value is greater than 31 or less than 0, no bits are tested.

Status Flags

This compute operation tests a bit in a register file location. There
is also a bit manipulation instruction that tests one or more bits in
a system register. This Bit Tst instruction should not be confused
with the Btst shifter operation.

For more information on Bit Tst, see “Type 18: System Register
Bit Manipulation” on page 8-72.

SZ Cleared if the tested bit is a 1, is set if the tested bit is a 0 or if the bit posi-
tion is greater than 31

SV Set if the bit position is greater than 31, otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-73

Computations Reference

Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6>

Function

Deposits a field from register Rx to register Rn. (See Figure 9-1.) The
input field is right-aligned within the fixed-point field of Rx. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is deposited in the fixed-point field of Rn,
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. Bits to the left and to the
right of the deposited field are set to 0. The floating-point extension field
of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take
values between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits, and to bit positions ranging from 0 to off-scale
left.

Figure 9-1. Field Alignment

39 19 13 7 0

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

deposit field

bit6 reference point

len6 bit6

Shifter Operations

9-74 ADSP-2136x SHARC Processor Programming Reference

Example

If len6=14 and bit6=13, then the 14 bits of Rx are deposited in Rn bits
34–21 (of the 40-bit word).

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \-------------/

 14 bits

39 31 23 15 7 0

|00000abc|defghijk|lmn00000|00000000|00000000| Rn

 \--------------/

 |

 bit position 13 (from reference point)

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-75

Computations Reference

Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6>

Function

Deposits a field from register Rx to register Rn. The field value is logically
ORed bitwise with the specified field of register Rn and the new value is
written back to register Rn. The input field is right-aligned within the
fixed-point field of Rx. Its length is determined by the len6 field in regis-
ter Ry or by the immediate len6 field in the instruction.

The field is deposited in the fixed-point field of Rn, starting from a bit
position determined by the bit6 field in register Ry or by the immediate
bit6 field in the instruction. Bit6 and len6 can take values between 0 and
63 inclusive, allowing for deposit of fields ranging in length from 0 to 32
bits, and to bit positions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \--------------/

 len6 bits

39 31 23 15 7 0

|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

 \--------------/

 |

 bit position bit6 (from reference point)

39 31 23 15 7 0

|abcdeopq|rstuvwxy|zabtuvwx|yzabcdef|ghijklmn| Rn new

 OR result

Shifter Operations

9-76 ADSP-2136x SHARC Processor Programming Reference

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-77

Computations Reference

Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE)

Function

Deposits and sign-extends a field from register Rx to register Rn. (See
Figure 9-2.) The input field is right-aligned within the fixed-point field of
Rx. Its length is determined by the len6 field in register Ry or by the
immediate len6 field in the instruction. The field is deposited in the
fixed-point field of Rn, starting from a bit position determined by the bit6
field in register Ry or by the immediate bit6 field in the instruction. The
MSBs of Rn are sign-extended by the MSB of the deposited field, unless
the MSB of the deposited field is off-scale left. Bits to the right of the
deposited field are set to 0. The floating-point extension field of Rn (bits
7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take values
between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits into bit positions ranging from 0 to off-scale left.

Figure 9-2. Field Alignment

39 19 13 7 0

len6 bit6

39 0

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

bit6 = starting bit position for deposit,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

sign bit extension deposit field

bit6 reference point

Shifter Operations

9-78 ADSP-2136x SHARC Processor Programming Reference

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \---------------/

 len6 bits

39 31 23 15 7 0

|aaaaaabc|defghijk|lmn00000|00000000|00000000| Rn

\----/\--------------/

 sign |

 extension bit position bit6

 (from reference point)

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-79

Computations Reference

Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)

Function

Deposits and sign-extends a field from register Rx to register Rn. The
sign-extended field value is logically ORed bitwise with the value of regis-
ter Rn and the new value is written back to register Rn. The input field is
right-aligned within the fixed-point field of Rx. Its length is determined
by the len6 field in register Ry or by the immediate len6 field in the
instruction. The field is deposited in the fixed-point field of Rn, starting
from a bit position determined by the bit6 field in register Ry.

The bit position can also be determined by the immediate bit6 field in the
instruction. Bit6 and len6 can take values between 0 and 63 inclusive to
allow the deposit of fields ranging in length from 0 to 32 bits into bit posi-
tions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|--------|--------|--abcdef|ghijklmn|--------| Rx

 \-------------/

 len6 bits

39 31 23 15 7 0

|aaaaaabc|defghijk|lmn00000|00000000|00000000|

\----/\--------------/

 sign |

extension bit position bit6

 (from reference point)

39 31 23 15 7 0

|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

Shifter Operations

9-80 ADSP-2136x SHARC Processor Programming Reference

39 31 23 15 7 0

|vwxyzabc|defghijk|lmntuvwx|yzabcdef|ghijklmn| Rn new
 |

 OR result

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are deposited to the left of the 32-bit fixed-point output field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-81

Computations Reference

Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6>

Function

Extracts a field from register Rx to register Rn. (See Figure 9-3.) The out-
put field is placed right-aligned in the fixed-point field of Rn. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is extracted from the fixed-point field of Rx
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. Bits to the left of the
extracted field are set to 0 in register Rn. The floating-point extension
field of Rn (bits 7–0 of the 40-bit word) is set to all 0s. Bit6 and len6 can
take values between 0 and 63 inclusive, allowing for extraction of fields
ranging in length from 0 to 32 bits, and from bit positions ranging from 0
to off-scale left.

Figure 9-3. Field Alignment

39 19 13 7 0

39 0

extracted bits placed in Rn, starting at LSB of 32-bit field

bit6 = starting bit position for extract,
referenced from the LSB of the 32-bit field

Ry

Rx

Rn

739 0

7

bit6 reference point

extract field

bit6len6

Shifter Operations

9-82 ADSP-2136x SHARC Processor Programming Reference

Example

39 31 23 15 7 0

|-----abc|defghijk|lmn-----|--------|--------| Rx

 \--------------/

 len6 bits |

 bit position bit6

 (from reference point)

39 31 23 15 7 0

|00000000|00000000|00abcdef|ghijklmn|00000000| Rn

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point, input field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-83

Computations Reference

Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE)

Function

Extracts and sign-extends a field from register Rx to register Rn. The out-
put field is placed right-aligned in the fixed-point field of Rn. Its length is
determined by the len6 field in register Ry or by the immediate len6 field
in the instruction. The field is extracted from the fixed-point field of Rx
starting from a bit position determined by the bit6 field in register Ry or
by the immediate bit6 field in the instruction. The MSBs of Rn are
sign-extended by the MSB of the extracted field, unless the MSB is
extracted from off-scale left.

The floating-point extension field of Rn (bits 7–0 of the 40-bit word) is
set to all 0s. Bit6 and len6 can take values between 0 and 63 inclusive,
allowing for extraction of fields ranging in length from 0 to 32 bits and
from bit positions ranging from 0 to off-scale left.

Example

39 31 23 15 7 0

|-----abc|defghijk|lmn-----|--------|--------| Rx

 \--------------/

 len6 bits |

 bit position bit6

 (from reference point)

39 31 23 15 7 0

|aaaaaaaa|aaaaaaaa|aaabcdef|ghijklmn|00000000| Rn

\-------------------/

 sign extension

Shifter Operations

9-84 ADSP-2136x SHARC Processor Programming Reference

Status Flags

SZ Set if the output operand is 0, otherwise cleared

SV Set if any bits are extracted from the left of the 32-bit fixed-point input field
(that is, if len6 + bit6 > 32), otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-85

Computations Reference

Rn = EXP Rx

Function

Extracts the exponent of the fixed-point operand in Rx. The exponent is
placed in the shf8 field in register Rn. The exponent is calculated as the
two’s-complement of:

 # leading sign bits in Rx – 1

Status Flags

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

SS Set if the fixed-point operand in Rx is negative (bit 31 is a 1), otherwise
cleared

Shifter Operations

9-86 ADSP-2136x SHARC Processor Programming Reference

Rn = EXP Rx (EX)

Function

Extracts the exponent of the fixed-point operand in Rx, assuming that the
operand is the result of an ALU operation. The exponent is placed in the
shf8 field in register Rn. If the AV status bit is set, a value of +1 is placed in
the shf8 field to indicate an extra bit (the ALU overflow bit). If the AV sta-
tus bit is not set, the exponent is calculated as the two’s-complement of:

 # leading sign bits in Rx – 1

Status Flags

SZ Set if the extracted exponent is 0, otherwise cleared

SV Cleared

SS Set if the exclusive OR of the AV status bit and the sign bit (bit 31) of the
fixed-point operand in Rx is equal to 1, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-87

Computations Reference

Rn = LEFTZ Rx

Function

Extracts the number of leading 0s from the fixed-point operand in Rx.
The extracted number is placed in the bit6 field in Rn.

Status Flags

SZ Set if the MSB of Rx is 1, otherwise cleared

SV Set if the result is 32, otherwise cleared

SS Cleared

Shifter Operations

9-88 ADSP-2136x SHARC Processor Programming Reference

Rn = LEFTO Rx

Function

Extracts the number of leading 1s from the fixed-point operand in Rx.
The extracted number is placed in the bit6 field in Rn.

Status Flags

SZ Set if the MSB of Rx is 0, otherwise cleared

SV Set if the result is 32, otherwise cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-89

Computations Reference

Rn = FPACK Fx

Function

Converts the IEEE 32-bit floating-point value in Fx to a 16-bit float-
ing-point value stored in Rn. The short float data format has an 11-bit
mantissa with a four-bit exponent plus sign bit. The 16-bit floating-point
numbers reside in the lower 16 bits of the 32-bit floating-point field.

The result of the FPACK operation is:

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal which can be unpacked into a normal IEEE floating-point
number.

Status Flags

135 < exp1

1 exp = source exponent sign bit remains the same in all cases

Largest magnitude representation

120 < exp ≤ 135 Exponent is MSB of source exponent concatenated with the three LSBs
of source exponent; the packed fraction is the rounded upper 11 bits of
the source fraction

109 < exp ≤ 120 Exponent=0; packed fraction is the upper bits (source exponent – 110)
of the source fraction prefixed by zeros and the “hidden” 1; the packed
fraction is rounded

exp < 110 Packed word is all zeros

SZ Cleared

SV Set if overflow occurs, cleared otherwise

SS Cleared

Shifter Operations

9-90 ADSP-2136x SHARC Processor Programming Reference

Fn = FUNPACK Rx

Function

Converts the 16-bit floating-point value in Rx to an IEEE 32-bit float-
ing-point value stored in Fx.

Result

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number that would have
underflowed, the exponent is set to 0 and the mantissa (including “hid-
den” 1) is right-shifted the appropriate amount. The packed result is a
denormal, which can be unpacked into a normal IEEE floating-point
number.

Status Flags

0 < exp1 ≤ 15

1 exp = source exponent sign bit remains the same in all cases

Exponent is the three LSBs of the source exponent prefixed by the MSB
of the source exponent and four copies of the complement of the MSB;
the unpacked fraction is the source fraction with 12 zeros appended

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the
source fraction; the unpacked fraction is the remainder of the source
fraction with zeros appended to pad it and the “hidden” 1 stripped away

SZ Cleared

SV Cleared

SS Cleared

ADSP-2136x SHARC Processor Programming Reference 9-91

Computations Reference

Multifunction Computations
Multifunction computations are operations that occur simultaneously
within the processor’s computational unit. The syntax for these operations
consists of combinations of instructions, delimited with commas and
ended with a semicolon. The three types of multifunction computations
appear below. Each type has a different format for the compute field.

• “Parallel Add and Subtract” on page 9-93

• “Parallel Multiplier and ALU” on page 9-95

• “Parallel Multiplier With Add and Subtract” on page 9-98

Operand Constraints
Each of the four input operands for multifunction computations are con-
strained to a different set of four register file locations, as shown in
Figure 9-4. For example, the x-input to the ALU must be R8, R9, R10, or
R11. In all other compute operations, the input operands can be any regis-
ter file location.

Multifunction Computations

9-92 ADSP-2136x SHARC Processor Programming Reference

Figure 9-4. Permitted Input Registers for Multifunction Computations

R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

MULTIPLIER

Any Register

ALU

REGISTER FILE

Any Register

R8 - F8

ADSP-2136x SHARC Processor Programming Reference 9-93

Computations Reference

Parallel Add and Subtract

Function (Fixed-Point)

Completes a dual add/subtract of the fixed-point fields in registers Rx and
Ry. The sum is placed in the fixed-point field of register Ra and the differ-
ence in the fixed-point field of Rs. The floating-point extension fields of
Ra and Rs are set to all 0s. In saturation mode (the ALU saturation mode
bit in MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Function (Floating-Point)

Completes a dual add/subtract of the floating-point operands in registers
Fx and Fy. The normalized results are placed in registers Fa and Fs: the
sum in Fa and the difference in Fs. Rounding is to nearest (IEEE) or by
truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding
mode and rounding boundary bits in MODE1. Post-rounded overflow
returns ±infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±zero. Denormal inputs are flushed to
±zero. A NAN input returns an all 1s result.

Syntax

Table 9-9 shows the fixed-point and floating-point syntax for multifunc-
tion add and subtract instructions.

Table 9-9. Multifunction, Parallel Add and Subtract

Syntax Opcode
(Bits 19–16)

Ra = Rx + Ry, Rs = Rx – Ry 0111

Fa = Fx + Fy, Fs = Fx – Fy 1111

Multifunction Computations

9-94 ADSP-2136x SHARC Processor Programming Reference

Compute Field (Fixed-Point)

Compute Field (Fixed-Point)

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 0111 Rs Ra Rx Ry

AZ Set if an output is 0s, otherwise cleared

AU Cleared

AN Set if the most significant output bit is 1 for either of the outputs, otherwise cleared

AV Set if the XOR of the carries of the two most significant adder stages of either of the
outputs is 1, otherwise cleared

AC Set if the carry from the most significant adder stage for either of the outputs is 1, oth-
erwise cleared

AS Cleared

AI Cleared

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 1111 Fs Fa Fx Fy

AZ Set if either of the post-rounded results is a denormal (unbiased exponent < –126) or
zero, otherwise cleared

AU Set if either post-rounded result is a denormal, otherwise cleared

AN Set if either of the floating-point results is negative, otherwise cleared

AV Set if a post-rounded result overflows (unbiased exponent > +127), otherwise cleared

AC Cleared

AS Cleared

AI Set if an input is a NAN or if both inputs are Infinities, otherwise cleared

ADSP-2136x SHARC Processor Programming Reference 9-95

Computations Reference

Parallel Multiplier and ALU

Function

The parallel multiplier/ALU operation performs a multiply or multi-
ply/accumulate and one of the following ALU operations: add, subtract,
average, fixed-point to floating-point conversion or floating-point to
fixed-point conversion, and/or floating-point abs, min, or max.

The multiplier and ALU operations are determined by OPCODE. The selec-
tions for the 6-bit OPCODE field are listed in Table 9-11. The multiplier x
and y operands are received from data registers RXM (FXM) and RYM
(FYM). The multiplier result operand is returned to data register RM
(FM). The ALU x and y operands are received from data registers RXA
(FXA) and RYA (FYA). The ALU result operand is returned to data regis-
ter RA (FA).

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a particular set of four
data registers as shown in Table 9-10.

Syntax

Table 9-11 provides the syntax and opcode for each of the parallel multi-
plier and ALU instructions for both fixed-point and floating-point
versions.

Table 9-10. Valid Data Registers for Input Operands

Input Valid Sources

Multiplier X R3-R0 (F3-F0)

Multiplier Y R7-R4 (F7-F4)

ALU X R11-R8 (F11-F8)

ALU Y R15-R12 (F15-F12)

Multifunction Computations

9-96 ADSP-2136x SHARC Processor Programming Reference

Table 9-11. Multifunction, Multiplier and ALU

Syntax Opcode
(Bits 22–16)

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12 1000100

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12 1000101

Rm = R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2 1000110

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12 1001000

MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12 1001001

MRF = MRF + R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2 1001010

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12 1001100

Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12 1001101

Rm = MRF + R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2 1001110

MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12 1010000

MRF = MRF – R3-0 * R7-4 (SSF), Ra = R11-8 – R15-12 1010001

MRF = MRF – R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2 1010010

Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12 1010100

Rm = MRF – R3-0 * R7-4 (SSFR), Ra = R11-8 – R15-12 1010101

Rm = MRF – R3-0 * R7-4 (SSFR), Ra =(R11-8 + R15-12)/2 1010110

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12 1011000

Fm = F3-0 * F7-4, Fa = F11-8 – F15-12 1011001

Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12 1011010

Fm = F3-0 * F7-4, Fa = FIX F11-8 by R15-122 1011011

Fm = F3-0 * F7-4, Fa = ABS F11-8 1011101

Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12) 1011110

Fm = F3-0 * F7-4, Fa = MIN (F11-8, F15-12) 1011111

ADSP-2136x SHARC Processor Programming Reference 9-97

Computations Reference

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Opcode (Table 9-11) Rs Ra Rxm Rym Rxa Rya

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Opcode (Table 9-11) Fs Fa Fxm Fym Fxa Fya

Multifunction Computations

9-98 ADSP-2136x SHARC Processor Programming Reference

Parallel Multiplier With Add and Subtract

Function

The parallel multiplier and dual add/subtract operation performs a multi-
ply or multiply/accumulate and computes the sum and the difference of
the ALU inputs.

The multiplier x and y operands are received from data registers RXM
(FXM) and RYM (FYM). The multiplier result operand is returned to
data register RM (FM). The ALU x and y operands are received from data
registers RXA (FXA) and RYA (FYA). The ALU result operands are
returned to data register RA (FA) and RS (FS).

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a different set of four
data registers as shown in Table 9-12.

Syntax

Table 9-13 provides the syntax and opcode for each of the parallel multi-
plier and add/subtract instructions for both fixed-point and floating-point
versions.

Table 9-12. Valid Sources of the Input Operands

Input Valid Sources

Multiplier X R3-R0 (F3-F0)

Multiplier Y R7-R4 (f7-f4)

ALU X R11-R8 (F11-F8)

ALU Y R15-R12 (F15-F12)

ADSP-2136x SHARC Processor Programming Reference 9-99

Computations Reference

Compute Field (Fixed-Point)

Compute Field (Floating-Point)

Table 9-13. Multifunction, Multiplier and Dual Add and Subtract

Syntax Opcode
(Bits 22–20)

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12, Rs=R11-8 – R15-12 110

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12, Fs=F11-8 – F15-12 111

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 10 Rs Rm Ra RxmM Rym Rxa Rya

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 11 Fs Fm Fa Fxm Fym Fxa Fya

Multifunction Computations

9-100 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference A-1

A INSTRUCTION SET QUICK
REFERENCE

This instruction set summary provides a syntax summary for each instruc-
tion and includes a cross reference to each instruction’s reference page.

Chapter Overview
The following summary topics appear in this chapter.

• “Compute and Move/Modify Summary” on page A-2

• “Program Flow Control Summary” on page A-4

• “Immediate Move Summary” on page A-5

• “Miscellaneous Operations Summary” on page A-7

• “Register Types Summary” on page A-9

• “Memory Addressing Summary” on page A-13

• “Instruction Set Notation Summary” on page A-14

• “Conditional Execution Codes Summary” on page A-16

• “SISD/SIMD Conditional Testing Summary” on page A-18

• “Instruction Opcode Acronym Summary” on page A-19

• “Universal Register Codes” on page A-23

• “ADSP-2136x Instruction Opcode Map” on page A-28

Compute and Move/Modify Summary

A-2 ADSP-2136x SHARC Processor Programming Reference

Compute and Move/Modify Summary
Compute and move/modify instructions are classed as Group I instruc-
tions. They provide math, conditional, and memory/register access
services. The series of tables that follow summarize the Group I instruc-
tions. For a complete description of these instructions, see the noted
pages.

“Type 1: Compute, Dreg«···»DM | Dreg«···»PM” on page 8-3

“Type 2: Compute” on page 8-6

“Type 3: Compute, ureg«···»DM | PM, register modify” on page 8-8

compute , DM(Ia, Mb) = dreg1 , PM(Ic, Md) = dreg2 ;

, dreg1 = DM(Ia, Mb) , dreg2 = PM(Ic, Md)

IF COND compute ;

IF COND compute , DM(Ia, Mb) = ureg (LW);

, PM(Ic, Md)

, DM(Mb, Ia) = ureg (LW);

, PM(Md, Ic)

, ureg = DM(Ia, Mb) (LW);

PM(Ic, Md) (LW);

, ureg = DM(Mb, Ia) (LW);

PM(Md, Ic) (LW);

ADSP-2136x SHARC Processor Programming Reference A-3

Instruction Set Quick Reference

“Type 4: Compute, dreg«···»DM | PM, data modify” on page 8-13

“Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg” on page 8-18

“Type 6: Immediate Shift, dreg«···»DM | PM” on page 8-22

“Type 7: Compute, modify” on page 8-27

IF COND compute , DM(Ia, <data6>) = dreg ;

, PM(Ic, <data6>)

, DM(<data6>, Ia) = dreg ;

, PM(<data6>, Ic)

, dreg = DM(Ia, <data6>) ;

PM(Ic, <data6>) ;

, dreg = DM(<data6>, Ia) ;

PM(<data6>, Ic) ;

IF COND compute, ureg1 = ureg2 ;

X dreg <-> Y dreg

IF COND shiftimm , DM(Ia, Mb) = dreg ;

, PM(Ic, Md)

, dreg = DM(Ia, Mb) ;

PM(Ic, Md) ;

IF COND compute , MODIFY (Ia, Mb) ;

(Ic, Md) ;

Program Flow Control Summary

A-4 ADSP-2136x SHARC Processor Programming Reference

Program Flow Control Summary
Program flow control instructions are classed as Group II instructions and
These instructions control program execution flow. The series of tables
that follow summarize the Group II instructions. For a complete descrip-
tion of these instructions, see the noted pages.

“Type 8: Direct Jump | Call” on page 8-31

“Type 9: Indirect Jump | Call, Compute” on page 8-35

IF COND JUMP <addr24> (DB) ;

(PC, <reladdr24>) (LA)

(CI)

(DB, LA)

(DB, CI)

IF COND CALL <addr24> (DB) ;

(PC, <reladdr24>)

IF COND JUMP (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) (LA) , ELSE compute

(CI)

(DB, LA)

(DB, CI)

IF COND CALL (Md, Ic) (DB) , compute ;

(PC, <reladdr6>) , ELSE compute

ADSP-2136x SHARC Processor Programming Reference A-5

Instruction Set Quick Reference

“Type 10: Indirect Jump | Compute, dreg«···»DM” on page 8-42

“Type 11: Return From Subroutine | Interrupt, Compute” on page 8-48

“Type 12: Do Until Counter Expired” on page 8-53

“Type 13: Do Until” on page 8-55

Immediate Move Summary
Immediate move instructions are classed as Group III instructions. They
provide memory/register access services. The series of tables that follow
summarize the Group III instructions. For a complete description of these
instructions, see the noted pages.

IF COND Jump (Md, Ic) , Else compute, DM(Ia, Mb) = dreg ;

(PC, <reladdr6>) compute, dreg = DM(Ia, Mb) ;

IF COND RTS (DB) , compute ;

(LR) , ELSE compute

(DB, LR)

IF COND RTI (DB) , compute ;

, ELSE compute

LCNTR = <data16> , DO <addr24> UNTIL LCE;

ureg (PC, <reladdr24>)

DO <addr24> UNTIL termination ;

(PC, <reladdr24>)

Immediate Move Summary

A-6 ADSP-2136x SHARC Processor Programming Reference

“Type 14: Ureg«···»DM | PM (direct addressing)” on page 8-59

“Type 15: Ureg«···»DM | PM (indirect addressing)” on page 8-62

“Type 16: Immediate data···»DM | PM” on page 8-66

“Type 17: Immediate data···»Ureg” on page 8-69

DM(<addr32>)
PM(<addr32>)

= ureg (LW);

ureg = DM(<addr32>) (LW);

PM(<addr32>) (LW);

DM(<data32>, Ia)
PM(<data32>, Ic)

= ureg (LW);

ureg = DM(<data32>, Ia) (LW);

PM(<data32>, Ic)

DM(Ia, Mb)
PM(Ic, Md)

= <data32> ;

ureg = <data32> ;

ADSP-2136x SHARC Processor Programming Reference A-7

Instruction Set Quick Reference

Miscellaneous Operations Summary
Miscellaneous instructions are classed as Group IV instructions. They pro-
vide system register, bit manipulation, and low power services. The series
of tables that follow summarize the Group IV instructions. For a complete
description of these instructions, see the noted pages.

The Type 23: IDLE16 and the Type 24: creg<<--->>ureg instruc-
tions are not supported on the ADSP-2136x processors.

“Type 18: System Register Bit Manipulation” on page 8-72

“Type 19: I Register Modify | Bit-Reverse” on page 8-75

“Type 20: Push, Pop Stacks, Flush Cache” on page 8-78

BIT SET sreg <data32> ;

CLR

TGL

TST

XOR

MODIFY (Ia, <data32>) ;

(Ic, <data32>)

BITREV (Ia, <data32>) ;

(Ic, <data32>)

PUSH LOOP , PUSH STS , PUSH PCSTK , FLUSH CACHE ;

POP POP POP

Miscellaneous Operations Summary

A-8 ADSP-2136x SHARC Processor Programming Reference

“Type 21: Nop” on page 8-80

“Type 22: Idle” on page 8-81

“Type 25: Cjump/Rframe” on page 8-82

NOP ;

IDLE ;

CJUMP function (DB) ;

(PC, <reladdr24>)

RFRAME ;

ADSP-2136x SHARC Processor Programming Reference A-9

Instruction Set Quick Reference

Register Types Summary
Table A-1 and Table A-2 list ADSP-2136x processor registers. The regis-
ters in Table A-1 are in the core processor and the registers in Table A-2
are in the integrated I/O processor sections of the processor.

Table A-1. Universal Registers (Ureg)

Register Type Register(s) Function

Register File
(ureg & dreg)

R0 – R15 Processing element X register file locations,
fixed-point

F0 – F15 Processing element X register file locations, float-
ing-point

S0 – S15 Processing element Y register file locations,
fixed-point

SF0 – SF15 Processing element Y register file locations, float-
ing-point

Program Sequencer PC Program counter (read-only)

PCSTK Top of PC stack

PCSTKP PC stack pointer

FADDR Fetch address (read-only)

DADDR Decode address (read-only)

LADDR Loop termination address, code; top of loop
address stack

CURLCNTR Current loop counter; top of loop count stack

LCNTR Loop count for next nested counter-controlled
loop

Register Types Summary

A-10 ADSP-2136x SHARC Processor Programming Reference

Data Address
Generators

I0 – I7 DAG1 index registers

M0 – M7 DAG1 modify registers

L0 – L7 DAG1 length registers

B0 – B7 DAG1 base registers

I8 – I15 DAG2 index registers

M8 – M15 DAG2 modify registers

L8 – L15 DAG2 length registers

B8 – B15 DAG2 base registers

Bus Exchange PX1 PMD-DMD bus exchange 1 (32 bits)

PX2 PMD-DMD bus exchange 2 (32 bits)

PX 64-bit combination of PX1 and PX2

Timer TPERIOD Timer period

TCOUNT Timer counter

Table A-1. Universal Registers (Ureg) (Cont’d)

Register Type Register(s) Function

ADSP-2136x SHARC Processor Programming Reference A-11

Instruction Set Quick Reference

System Registers
(sreg & ureg)

MODE1 Mode control & status

MODE2 Mode control & status

IRPTL Interrupt latch

IMASK Interrupt mask

IMASKP Interrupt mask pointer (for nesting)

MMASK Mode mask

FLAGS Flag pins input/output state

LIRPTL Link Port interrupt latch, mask, and pointer

ASTATx Element x arithmetic status flags, bit test flag, etc.

ASTATy Element y arithmetic status flags, bit test flag, etc.

STKYx Element x sticky arithmetic status flags, stack sta-
tus flags, and so on.

STKYy Element y sticky arithmetic status flags, stack sta-
tus flags, and so on.

USTAT1 User status register 1

USTAT2 User status register 2

USTAT3 User status register 3

USTAT4 User status register 4

Table A-1. Universal Registers (Ureg) (Cont’d)

Register Type Register(s) Function

Register Types Summary

A-12 ADSP-2136x SHARC Processor Programming Reference

Table A-2. I/O and Multiplier Registers

Register Type Register(s) Function

IOP Registers
(system control)

SYSCON System control

SYSTAT System status

WAIT Memory wait states

VIRPT Multiprocessor IRQ

IOP Registers
(system control)

For a complete list of IOP registers, see
Appendix A, “Input/Output Registers” in
the processor specific ADSP-2136x SHARC
Processor Hardware Reference. Specifically,
Table A-1, I/O Processor Register Groups,
provides a comprehensive listing of all IOP
registers.

Multiplier Registers MR, MR0, MR1, MR2, Multiplier results

MRF, MR0F, MR1F, MR2F Multiplier results,
foreground

MRB, MR0B, MR1B, MR2B Multiplier results,
background

ADSP-2136x SHARC Processor Programming Reference A-13

Instruction Set Quick Reference

Memory Addressing Summary
ADSP-2136x processors support the following types of addressing.

Direct Addressing

Absolute address (Instruction Types 8, 12, 13, 14)

dm(0x000015F0) = astat;

if ne jump label2; {'label2' is an address label}

PC-relative address (Instruction Types 8, 9, 10, 12, 13)

call(pc,10), r0=r6+r3;

do(pc,length) until sz; {'length' is a variable}

Indirect Addressing (using DAG registers):

Post-modify with M register, update I register (Instruction Types
1, 3, 6, 16)

f5=pm(i9,m12);

dm(i0,m3)=r3, r1=pm(i15,m10);

Pre-modify with M register, no update (Instruction Types
3, 9, 10)

r1=pm(m10,i15);

jump(m13,i11);

Instruction Set Notation Summary

A-14 ADSP-2136x SHARC Processor Programming Reference

Post-modify with immediate value, update I register (Instruction
Type 4)

f15=dm(i0,6);

if av r1=pm(i15,0x11);

Pre-modify with immediate value, no update (Instruction Types
4, 15)

if av r1=pm(0x11,i15);

dm(127,i5)=laddr;

Instruction Set Notation Summary
The conventions for ADSP-2136x instruction syntax descriptions appear
in Table A-3. Other parts of the instruction syntax and opcode informa-
tion also appear in this section.

Table A-3. Instruction Set Notation

Notation Meaning

UPPERCASE Explicit syntax—assembler keyword (notation only; assembler is
case-insensitive and lowercase is the preferred programming con-
vention)

; Semicolon (instruction terminator)

, Comma (separates parallel operations in an instruction)

italics Optional part of instruction

| option1 |
| option2 |

List of options between vertical bars (choose one)

compute ALU, multiplier, shifter or multifunction operation (see “Compu-
tations Reference” on page 9-1)

ADSP-2136x SHARC Processor Programming Reference A-15

Instruction Set Quick Reference

shiftimm Shifter immediate operation (see “Computations Reference” on
page 9-1)

cond Status condition (see condition codes in Table A-4 on page A-16)

termination Loop termination condition (see condition codes in Table A-4 on
page A-16)

ureg Universal register

cureg Complementary universal register (see Table A-10 on page A-25)

sreg System register

csreg Complementary system register (see Table A-10 on page A-25)

dreg Data register (register file): R15-R0 or F15-F0

cdreg Complementary data register (register file): R15-R0 or F15-F0 (see
Table A-10 on page A-25)

creg One of 32 cache entries, an entry consisting of a CH, CL, & CA

Ia I7-I0 (DAG1 index register)

Mb M7-M0 (DAG1 modify register)

Ic I15-I8 (DAG2 index register)

Md M15-M8 (DAG2 modify register)

<datan> n-bit immediate data value

<addrn> n-bit immediate address value

<reladdrn> n-bit immediate PC-relative address value

+1 the incremented data, address or register value

(DB) Delayed branch

(LA) Loop abort (pop loop and PC stacks on branch)

(CI) Clear interrupt

(LR) Loop reentry

(LW) Long Word (forces long word access in normal word range)

Table A-3. Instruction Set Notation (Cont’d)

Notation Meaning

Conditional Execution Codes Summary

A-16 ADSP-2136x SHARC Processor Programming Reference

Conditional Execution Codes Summary
In a conditional instruction, execution of the entire instruction depends
on the specified condition (cond or terminate). Table A-4 lists the codes
for conditionals use (IF and DO UNTIL).

Table A-4. IF Condition and Do/Until Termination Mnemonics

Condition From Description True If… Mnemonic

ALU ALU = 0 AZ = 1 EQ

ALU ≠ 0 AZ = 0 NE

ALU > 0 footnote1 GT

ALU < zero footnote2 LT

ALU ≥ 0 footnote3 GE

ALU ≤ 0 footnote4 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV

Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

Bit Test Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

ADSP-2136x SHARC Processor Programming Reference A-17

Instruction Set Quick Reference

Flag Input Flag0 asserted FI0 = 1 FLAG0_IN

Flag0 not asserted FI0 = 0 NOT FLAG0_IN

Flag1 asserted FI1 = 1 FLAG1_IN

Flag1 not asserted FI1 = 0 NOT FLAG1_IN

Flag2 asserted FI2 = 1 FLAG2_IN

Flag2 not asserted FI2 = 0 NOT FLAG2_IN

Flag3 asserted FI3 = 1 FLAG3_IN

Flag3 not asserted FI3 = 0 NOT FLAG3_IN

Mode Bus master true BM

Bus master false NOT BM

Sequencer Loop counter expired (Do) CURLCNTR = 1 LCE

Loop counter not expired
(If)

CURLCNTR ≠ 1 NOT ICE

Always false (Do) Always FOREVER

Always true (If) Always TRUE

1 ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)]
 or AZ = 0

2 ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
3 ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or

(AF and AN and AZ)] = 0
4 ALU lesser or equal (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)]

or AZ = 1

Table A-4. IF Condition and Do/Until Termination Mnemonics (Cont’d)

Condition From Description True If… Mnemonic

SISD/SIMD Conditional Testing Summary

A-18 ADSP-2136x SHARC Processor Programming Reference

SISD/SIMD Conditional Testing Summary
The processor handles conditional execution differently in SISD versus
SIMD mode. There are three ways that conditionals differ in SIMD
mode:

• In conditional computation (if ... compute) instructions, each pro-
cessing element executes the computation based on evaluating the
condition in that processing element.

• In conditional program control (if ... jump/call) instructions, the
program sequencer executes the jump/call based on a logical AND
of the conditions in both processing elements.

• In conditional computation instructions with an ELSE clause, each
processing element executes the ELSE computation based on evalu-
ating the inverse of the condition (not cond) in that processing
element.

Table A-5 and Table A-6 compare SISD and SIMD if-ELSE conditional
execution, which are available in the Type 9, 10, and 11 instructions.

Table A-5. SISD Mode Conditional Execution

Conditional Test ELSE Modifier Results for Type 11 (RTS)

0 (false) 0 (without else) rts nops, compute nops

0 (false) 1 (else) rts nops, compute executes

1 (true) 0 (without else) rts executes, compute executes

1 (true) 1 (else) rts executes, compute nops

ADSP-2136x SHARC Processor Programming Reference A-19

Instruction Set Quick Reference

For more information and examples, see the following instruction refer-
ence pages.

• “Type 9: Indirect Jump | Call, Compute” on page 8-35

• “Type 10: Indirect Jump | Compute, dreg«···»DM” on page 8-42

• “Type 11: Return From Subroutine | Interrupt, Compute” on
page 8-48

Instruction Opcode Acronym Summary
In ADSP-2136x processor opcodes, some bits are explicitly defined to be
zeros or ones. The values of other bits or fields set various parameters for
the instruction. The terms in Table A-7 define these opcode bits and
fields. Unspecified bits are ignored when the processor decodes the
instruction, but are reserved for future use.

Table A-6. SIMD Mode Conditional Execution

Conditional Test Else
Modifier

Results for Type 11 (RTS)

PEx PEy

0 0 0 rts nops, pex compute nops, pey compute nops

0 1 0 rts nops, pex compute nops, pey compute executes

1 0 0 rts nops, pex compute exe, pey compute nops

1 1 0 rts exe, pex compute exe, pey compute exe

0 0 1 rts nops, pex compute exe, pey compute exe

0 1 1 rts nops, pex compute exe, pey compute nops

1 0 1 rts nops, pex compute nops, pey compute exe

1 1 1 rts exe, pex compute nops, pey compute nops

Instruction Opcode Acronym Summary

A-20 ADSP-2136x SHARC Processor Programming Reference

Table A-7. Opcode Acronyms

Bit/Field Description States

A Loop abort code 0

1

Do not pop loop, PC stacks on
branch
Pop loop, PC stacks on branch

ADDR Immediate address field

AI Computation unit register 0000
0001
0010
0100
0101
0110

MR0F
MR1F
MR2F
MR0B
MR1B
MR2B

B Branch type 0
1

Jump
Call

BOP Bit operation select codes 000
001
010
100
101

Set
Clear
Toggle
Test
XOR

COMPUTE Compute operation field (see “Computations Reference” in Chapter 9, Compu-
tations Reference)

COND Status condition codes 0–31

CI Clear interrupt code 0
1

Do not clear current interrupt
Clear current interrupt

CREG Instruction cache entry 0–31

CS Instruction cache register select
code

00
01
11

Lower half of instruction RAM entry
Upper half of instruction RAM entry
Address CAM entry

CU Computation unit select codes 00
01
10

ALU
Multiplier
Shifter

DATA Immediate data field

DEC Counter decrement code 0
1

No counter decrement
Counter decrement

ADSP-2136x SHARC Processor Programming Reference A-21

Instruction Set Quick Reference

DMD Memory access direction 0
1

Read
Write

DMI Index (I) register numbers,
DAG1

0–7

DMM Modify (M) register numbers,
DAG1

0–7

DREG Register file locations 0–15

E ELSE clause code 0
1

No ELSE clause
ELSE clause

FC Flush cache code 0
1

No cache flush
Cache flush

G DAG/Memory select 0
1

DAG1 or data memory
DAG2 or program memory

INC Counter increment code 0
1

No counter increment
Counter increment

J Jump type 0
1

Non-delayed
Delayed

L Long word memory address 0
1

Access size based on memory map
Long word (64-bit) access size

LPO Loop stack pop code 0
1

No stack pop
Stack pop

LPU Loop stack push code 0
1

No stack push
Stack push

LR Loop reentry code 0
1

No loop reentry
Loop reentry

NUM Interrupt vector 0–7

PMD Memory access direction 0
1

Read
Write

PMI Index (I) register numbers,
DAG2

8–15

Table A-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

Instruction Opcode Acronym Summary

A-22 ADSP-2136x SHARC Processor Programming Reference

PMM Modify (M) register numbers,
DAG2

8–15

PPO PC stack pop code 0
1

No stack pop
Stack pop

PPU PC stack push code 0
1

No stack push
Stack push

RELADDR PC-relative address field

S UREG transfer/instruction cache
read-load select

0
1

Instruction cache read-load
Ureg transfer

SPO Status stack pop code 0
1

No stack pop
Stack pop

SPU Status stack push code 0
1

No stack push
Stack push

SREG System register code 0–15 (see “Universal Register Codes” on
page A-23)

TERM Termination condition codes 0–31

U Update, index (I) register 0
1

Pre-modify, no update
Post-modify with update

UREG Universal register code 0–256 (see “Universal Register Codes” on
page A-23)

RA, RM, RN,
RS, RX, RY

Register file locations for com-
pute operands and results

0–15

RXA ALU x-operand register file loca-
tion for multifunction operations

8–11

RXM Multiplier x-operand register file
location for multifunction opera-
tions

0–3

Table A-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

ADSP-2136x SHARC Processor Programming Reference A-23

Instruction Set Quick Reference

Universal Register Codes
Table A-8, Table A-9, Table A-10, and Table A-11 in this section list the
bit codes for registers that appear within opcode fields.

RYA ALU y-operand register file loca-
tion for multifunction operations

12–15

RYM Multiplier y-operand register file
location for multifunction opera-
tions

4–7

Table A-8. Universal Registers

Register Description

PC program counter

PCSTK top of PC stack

PCSTKP PC stack pointer

FADDR fetch address

DADDR decode address

LADDR loop termination address

CURLCNTR current loop counter

LCNTR loop counter

R15–R0 X element register file locations

S15–S0 Y element register file locations

I15–I0 DAG1 and DAG2 index registers

M15–M0 DAG1 and DAG2 modify registers

L15–L0 DAG1 and DAG2 length registers

Table A-7. Opcode Acronyms (Cont’d)

Bit/Field Description States

Universal Register Codes

A-24 ADSP-2136x SHARC Processor Programming Reference

B15–B0 DAG1 and DAG2 base registers

PX 48-bit PX1 and PX2 combination

PX1 bus exchange 1 (16 bits)

PX2 bus exchange 2 (32 bits)

TPERIOD timer period

TCOUNT timer counter

Table A-9. Universal and System Registers

Register Description

MODE1 mode control 1

MODE2 mode control 2

IRPTL interrupt latch

IMASK interrupt mask

IMASKP interrupt mask pointer

MMASK mode mask

FLAGS flag pins input/output state

ASTATx X element arithmetic status

STKYx X element sticky status

ASTATy Y element arithmetic status

STKYy Y element sticky status

USTAT1 user status reg 1

USTAT2 user status reg 2

USTAT3 user status reg 3

USTAT4 user status reg 4

Table A-8. Universal Registers (Cont’d)

Register Description

ADSP-2136x SHARC Processor Programming Reference A-25

Instruction Set Quick Reference

Table A-11 shows how the Ureg register codes appear to PEx.

Table A-10. Complementary Registers (Ureg–Cureg)

Register Type SIMD Mode Complementary Registers

Data Register (Dreg and Ureg) R0–S0
R1–S1
R2–S2
R3–S3
R4–S4
R5–S5
R6–S6
R7–S7
R8–S8
R9–S9
R10–S10
R11–S11
R12–S12
R13–S13
R14–S14
R15–S15

System Register (Sreg and Ureg) USTAT1–USTAT2
USTAT3–USTAT4
ASTATx–ASTATy
STKYx–STKYy

Bus Exchange Register (Ureg) PX1–PX2

Table A-11. Processing Element X Universal Register Codes
(SISD/SIMD)

Bits:
3210 Bits:

7654
0000 0001 0010 0011 0100 0101 0110 0111

0000 R0 I0 M0 L0 B0 S0 FADDR USTAT1

0001 R1 I1 M1 L1 B1 S1 DADDR USTAT2

0010 R2 I2 M2 L2 B2 S2 MODE1

Universal Register Codes

A-26 ADSP-2136x SHARC Processor Programming Reference

0011 R3 I3 M3 L3 B3 S3 PC MMASK

0100 R4 I4 M4 L4 B4 S4 PCSTK MODE2

0101 R5 I5 M5 L5 B5 S5 PCSTKP FLAGS

0110 R6 I6 M6 L6 B6 S6 LADDR ASTATx

0111 R7 I7 M7 L7 B7 S7 CURL-
CNTR

ASTATy

1000 R8 I8 M8 L8 B8 S8 LCNTR STKYx

1001 R9 I9 M9 L9 B9 S9 EMUCLK STKYy

1010 R10 I10 M10 L10 B10 S10 EMUCLK2 IRPTL

1011 R11 I11 M11 L11 B11 S11 PX IMASK

1100 R12 I12 M12 L12 B12 S12 PX1 IMASKP

1101 R13 I13 M13 L13 B13 S13 PX2 LRPTL

1110 R14 I14 M14 L14 B14 S14 TPERIOD USTAT3

1111 R15 I15 M15 L15 B15 S15 TCOUNT USTAT4

Table A-11. Processing Element X Universal Register Codes
(SISD/SIMD) (Cont’d)

Bits:
3210 Bits:

7654
0000 0001 0010 0011 0100 0101 0110 0111

ADSP-2136x SHARC Processor Programming Reference A-27

Instruction Set Quick Reference

Table A-12 shows how the Ureg register codes appear to PEy.

Table A-12. Processing Element Y Universal Register Codes (SIMD)

Bits:
3210 Bits:

7654
0000 0001 0010 0011 0100 0101 0110 0111

0000 S0 I0 M0 L0 B0 R0 FADDR USTAT2

0001 S1 I1 M1 L1 B1 R1 DADDR USTAT1

0010 S2 I2 M2 L2 B2 R2 MODE1

0011 S3 I3 M3 L3 B3 R3 PC MMASK

0100 S4 I4 M4 L4 B4 R4 PCSTK MODE2

0101 S5 I5 M5 L5 B5 R5 PCSTKP FLAGS

0110 S6 I6 M6 L6 B6 R6 LADDR ASTATy

0111 S7 I7 M7 L7 B7 R7 CURL-
CNTR

ASTATx

1000 S8 I8 M8 L8 B8 R8 LCNTR STKYy

1001 S9 I9 M9 L9 B9 R9 EMUCLK STKYx

1010 S10 I10 M10 L10 B10 R10 EMUCLK2 IRPTL

1011 S11 I11 M11 L11 B11 R11 PX IMASK

1100 S12 I12 M12 L12 B12 R12 PX2 IMASKP

1101 S13 I13 M13 L13 B13 R13 PX1 LRPTL

1110 S14 I14 M14 L14 B14 R14 TPERIOD USTAT4

1111 S15 I15 M15 L15 B15 R15 TCOUNT USTAT3

ADSP-2136x Instruction Opcode Map

A-28 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x Instruction Opcode Map
Table A-13. ADSP-2136x Processor Opcodes (Bits 47–27)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

“Type 1: Compute,
Dreg«···»DM |
Dreg«···»PM”

001
D
M
D

DMI DMM
P
M
D

DM DREG PMI PMM

“Type 2: Compute”
000 00001 COND

“Type 3: Compute,
ureg«···»DM | PM, reg-
ister modify”

010 U I M COND G D L UREG>

“Type 4: Compute,
dreg«···»DM | PM, data
modify”

011 0 I G D U COND DATA

(a) “Type 5: Compute,
ureg«··· »ureg |
Xdreg<->Ydreg”

011 1 0 SRC UREG COND SU
DEST
UREG>

(b) “Type 5: Compute,
ureg«··· »ureg |
Xdreg<->Ydreg”

011 1 1 Y DREG COND

(a) “Type 6: Immedi-
ate Shift, dreg«···»DM |
PM”

100 0 I M COND G D DATAEX

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-2136x SHARC Processor Programming Reference A-29

Instruction Set Quick Reference

Table A-14. ADSP-2136x Processor Opcodes (Bits 26–0)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PM DREG COMPUTE

COMPUTE

<UREG COMPUTE

DREG COMPUTE

<DEST
UREG

COMPUTE

X DREG COMPUTE

DREG 0 SHIFTOP DATA RN RX

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-2136x Instruction Opcode Map

A-30 ADSP-2136x SHARC Processor Programming Reference

Table A-15. ADSP-2136x Processor Opcodes (Bits 47–27) (Cont’d)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

(b) “Type 6: Immedi-
ate Shift, dreg«···»DM |
PM”

000 00010 COND DATAEX

“Type 7: Compute,
modify” 000 00100 G COND I M

(a) “Type 8: Direct
Jump | Call” 000 00110 B A COND

(b) “Type 8: Direct
Jump | Call” 000 00111 B A COND

(a) “Type 9: Indirect
Jump | Call, Compute” 000 01000 B A COND PMI PMM

(b) “Type 9: Indirect
Jump | Call, Compute” 000 01001 B A COND RELADDR

(a) “Type 10: Indirect
Jump | Compute,
dreg«···»DM”

110 D DMI DMM COND PMI PMM

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-2136x SHARC Processor Programming Reference A-31

Instruction Set Quick Reference

Table A-16. ADSP-2136x Processor Opcodes (Bits 26–0) (Cont’d)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SHIFTOP DATA RN RX

COMPUTE

J CI ADDR

J CI RELADDR

J E CI COMPUTE

J E CI COMPUTE

DREG COMPUTE

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-2136x Instruction Opcode Map

A-32 ADSP-2136x SHARC Processor Programming Reference

Table A-17. ADSP-2136x Processor Opcodes (Bits 47–27) (Cont’d)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

(b) “Type 10: Indirect
Jump | Compute,
dreg«···»DM”

111 D DMI DMM COND RELADDR

(a) “Type 11: Return
From Subroutine |
Interrupt, Compute”

000 01010 COND

(b) “Type 11: Return
From Subroutine |
Interrupt, Compute”

000 01011 COND

(a) “Type 12: Do Until
Counter Expired” 000 01100 DATA>

(b) “Type 12: Do Until
Counter Expired” 000 01101 0 UREG

“Type 13: Do Until”
000 01110 TERM

“Type 14: Ureg«···»DM
| PM (direct address-
ing)”

000 100 G D L UREG ADDR
(upper 5 bits)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-2136x SHARC Processor Programming Reference A-33

Instruction Set Quick Reference

Table A-18. ADSP-2136x Processor Opcodes (Bits 26–0) (Cont’d)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DREG COMPUTE

J E L
R

COMPUTE

J E COMPUTE

<DATA RELADDR

RELADDR

RELADDR

ADDR
(lower 27 bits)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-2136x Instruction Opcode Map

A-34 ADSP-2136x SHARC Processor Programming Reference

Table A-19. ADSP-2136x Processor Opcodes (Bits 47–27) (Cont’d)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

“Type 15: Ureg«···»DM
| PM (indirect address-
ing)”

101 G I D L UREG DATA
(upper 5 bits)

“Type 16: Immediate
data···»DM | PM” 100 1 I M G DATA

(upper 5 bits)

“Type 17: Immediate
data···»Ureg” 000 01111 0 UREG DATA

(upper 5 bits)

“Type 18: System Reg-
ister Bit Manipulation” 000 10100 BOP SREG DATA

(upper 5 bits)

(a) “Type 19: I Regis-
ter Modify |
Bit-Reverse”

000 10110 0 G I DATA
(upper 5 bits)

(b)“Type 19: I Register
Modify | Bit-Reverse” 000 10110 1 G I DATA

(upper 5 bits)

“Type 20: Push, Pop
Stacks, Flush Cache” 000 10111

L
P
U

L
P
O

S
P
U

S
P
O

P
P
U

P
P
O

F
C

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-2136x SHARC Processor Programming Reference A-35

Instruction Set Quick Reference

Table A-20. ADSP-2136x Processor Opcodes (Bits 26–0) (Cont’d)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

DATA
(lower 27 bits)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-2136x Instruction Opcode Map

A-36 ADSP-2136x SHARC Processor Programming Reference

Table A-21. ADSP-2136x Processor Opcodes (Bits 47–27) (Cont’d)

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

“Type 21: Nop”
000 00000 0

“Type 22: Idle”
000 00000 1

(a) “Type 25:
Cjump/Rframe” 0001 1000 0000 0100 0000 0

(b) “Type 25:
Cjump/Rframe” 0001 1000 0100 0100 0000 0

(c) “Type 25:
Cjump/Rframe” 0001 1001 0000 0000 0000 0

Instruction Type 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

ADSP-2136x SHARC Processor Programming Reference A-37

Instruction Set Quick Reference

Table A-22. ADSP-2136x Processor Opcodes (Bits 26–0) (Cont’d)

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 ADDR

000 RELADDR

000 0000 0000 0000 0000 0000 0000

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADSP-2136x Instruction Opcode Map

A-38 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference B-1

B REGISTERS

The ADSP-2136x processor has general-purpose and dedicated registers in
each of its functional blocks. The register reference information for each
functional block includes bit definitions, initialization values, and mem-
ory-mapped addresses (for I/O processor registers). Information on each
type of register is available at the following locations:

• “Control and Status System Registers” on page B-2

• “Processing Element Registers” on page B-22

• “Program Sequencer Registers” on page B-24

• “Data Address Generator Registers” on page B-34

• “Timer Registers” on page B-35

• “Power Management Registers” on page B-38

• “I/O Processor Registers” on page B-43

When writing processor programs, it is often necessary to set, clear, or test
bits in the processor’s registers. While these bit operations can all be done
by referring to the bit’s location within a register or (for some operations)
the register’s address with a hexadecimal number, it is much easier to use
symbols that correspond to the bit’s or register’s name. For convenience
and consistency, Analog Devices provides a header file that contains these
bit and registers definitions. An #include file is provided with the Visu-
alDSP tools and can be found in the VisualDSP/2136x/include directory.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.

Control and Status System Registers

B-2 ADSP-2136x SHARC Processor Programming Reference

For more information, see “Interrupt Registers” in the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21362/3/4/5/6 Proces-
sors and the ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors.

Control and Status System Registers
The processor’s control and status system registers determine how the pro-
cessor core operates and indicate the status of many processor core
operations. In “Instruction Set” in Chapter 8, Instruction Set, these regis-
ters are referred to as system registers (Sreg), which are a subset of the
processor’s universal registers (Ureg). Not all registers are valid in all
assembly language instructions. In the assembly syntax descriptions, the
register group name (Ureg, Sreg, and others) indicates which type of regis-
ter is valid within the instruction’s context. Table B-1 lists the processor
core’s control and status registers with their initialization values. Descrip-
tions of each register follow. Other system registers (Sreg) are in the I/O
processor. These registers are described in detail in the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21362/3/4/5/6 Proces-
sors and the ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors.

Table B-1. Control and Status Registers for the Processor Core

Register Name and Page Reference Initialization After Reset

“Mode Control 1 Register (MODE1)” on page B-3 0x0000 0000

“Mode Mask Register (MMASK)” on page B-7 0x0020 0000

“Mode Control 2 Register (MODE2)” on page B-11 0x4200 0000

“Arithmetic Status Registers (ASTATx and ASTATy)” on page B-12 0x0000 0000

“Sticky Status Registers (STKYx and STKYy)” on page B-17 0x0540 0000

“User-Defined Status Registers (USTATx)” on page B-21 0x0000 0000

ADSP-2136x SHARC Processor Programming Reference B-3

Registers

Mode Control 1 Register (MODE1)
The mode control 1 register is a non memory-mapped, universal, system
register (Ureg and Sreg). The reset value for this register is 0x0000 0000.
Figure B-1, Figure B-2, and Table B-3 provide bit information for the
MODE1 register.

Figure B-1. Mode Control 1 Register Bits 31–16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CSEL

PEYEN

BDCST9

RND32

BDCST1

CBUFEN

Reserved

Circular Buffer Addressing Enable
1=Enable circular buffering
0=Disable (linear) circular buffering

Broadcast Register Loads Indexed With I1 Enable
1=Broadcast I1
0=No I1 broadcast

Broadcast Register Loads Indexed With I9 Enable
1=Broadcast I9
0=No I9 broadcast Processor Element Y Enable

1=Enable PEy—SIMD mode
0=Disable PEy—SISD mode

Bus Master Code Selection
00=Processor is bus master
01, 10, 11=Processor is not
bus master

Reserved

Rounding for 32-Bit Float-
ing-Point Data Select
1=Round data to 32 bits
0=Round data to 40 bits

MODE1 (Bits 31-16)

Control and Status System Registers

B-4 ADSP-2136x SHARC Processor Programming Reference

Figure B-2. Mode Control 1 Register Bits 15–0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BR0

SRCU

IRPTEN

BR8

ALUSAT

SSE

TRUNC
Truncation Rounding Mode
Select
1=Round to zero
0=Round to nearest

Fixed-point Sign Extension
Select
1=Enable
0=Disable

ALU Saturation Select
1=Enable
0=Disable

Global Interrupt Enable
1=Enable
0=Disable

Secondary Registers Computa-
tional Units Enable
1=Enable MR primary
0=Enable MR alternate

Bit-Reverse Addressing for I0
1=Enable I0 (DAG1)
0=Disable I0 (DAG1)

Bit-Reverse Addressing for I8
1=Enable I8 (DAG2)
0=Disable I8 (DAG2)

NESTM
Nesting Multiple Interrupts Enable
1=Enable
0=Disable

SRD1H

SRD1L
Secondary Registers DAG1
Low Enable
1=Enable DAG1 3–0 primary
0=Enable DAG1 3–0 alternate

Secondary Registers DAG1
High Enable
1=Enable DAG1 7–4 primary
0=Enable DAG1 7–4 alternate

SRRFL
Secondary Registers Register File
Low Enable
1=Enable R7–R0 primary
0=Enable R7–R0 secondary

SRD2H
Secondary Registers DAG2
High Enable
1=Enable DAG2 15–12 primary
0=Enable DAG2 15–12 alternate

SRD2L
Secondary Registers DAG2
Low Enable
1=Enable DAG2 11–8 primary
0=Enable DAG2 11–8 alternate

SRRFH
Secondary Registers Register File High Enable
1=Enable R15–R8 primary
0=Enable R15–R8 secondary

Reserved

MODE1 (Bits 15–0)

ADSP-2136x SHARC Processor Programming Reference B-5

Registers

Table B-2. Mode Control 1 Register (MODE1) Bit Descriptions

Bit Name Description

0 BR8 Bit-Reverse Addressing For Index I8 Enable. Enables (bit reversed if
set, = 1) or disables (normal if cleared, = 0) bit-reversed addressing for
accesses that are indexed with DAG2 register I8.

1 BR0 Bit-Reverse Addressing For Index I0 Enable. Enables (bit reversed if
set, = 1) or disables (normal if cleared, = 0) bit-reversed addressing for
accesses that are indexed with DAG1 register I0.

2 SRCU Secondary Registers For Computational Units Enable. Enables (use
secondary if set, = 1) or disables (use primary if cleared, = 0) secondary
result (MR) registers in the computational units.

3 SRD1H Secondary Registers For DAG1 High Enable. Enables (use secondary if
set, = 1) or disables (use primary if cleared, = 0) secondary DAG1 regis-
ters for the upper half (I, M, L, B7–4) of the address generator.

4 SRD1L Secondary Registers For DAG1 Low Enable. Enables (use secondary if
set, = 1) or disables (use primary if cleared, = 0) secondary DAG1 regis-
ters for the lower half (I, M, L, B3–0) of the address generator.

5 SRD2H Secondary Registers For DAG2 High Enable. Enables (use secondary if
set, = 1) or disables (use primary if cleared, = 0) secondary DAG2 regis-
ters for the upper half (I, M, L, B15–12) of the address generator.

6 SRD2L Secondary Registers For DAG2 Low Enable. Enables (use secondary if
set, = 1) or disables (use primary if cleared, = 0) secondary DAG2 regis-
ters for the lower half (I, M, L, B11–8) of the address generator.

7 SRRFH Secondary Registers For Register File High Enable. Enables (use sec-
ondary if set, = 1) or disables (use primary if cleared, = 0) secondary
data registers for the upper half (R15–8) of the computational units.

9–8 Reserved

10 SRRFL Secondary Registers For Register File Low Enable. Enables (use sec-
ondary if set, = 1) or disables (use primary if cleared, = 0) secondary
data registers for the lower half (R7–0) of the computational units.

Control and Status System Registers

B-6 ADSP-2136x SHARC Processor Programming Reference

11 NESTM Nesting Multiple Interrupts Enable. Enables (nest if set, = 1) or dis-
ables (no nesting if cleared, = 0) interrupt nesting in the interrupt con-
troller. When interrupt nesting is disabled, a higher priority interrupt
can not interrupt a lower priority interrupt’s service routine. Other
interrupts are latched as they occur, but the processor processes them
after the active routine finishes. When interrupt nesting is enabled, a
higher priority interrupt can interrupt a lower priority interrupt’s ser-
vice routine. Lower interrupts are latched as they occur, but the proces-
sor processes them after the nested routines finish.

12 IRPTEN Global Interrupt Enable. Enables (if set, = 1) or disables (if cleared,
= 0) all maskable interrupts.

13 ALUSAT ALU Saturation Select. Selects whether the computational units satu-
rate results on positive or negative fixed–point overflows (if 1) or return
unsaturated results (if 0).

14 SSE Fixed–Point Sign Extension Select. Selects whether the computational
units sign-extend short-word, 16-bit data (if 1) or zero-fill the upper 32
bits (if 0).

15 TRUNC Truncation Rounding Mode Select. Selects whether the computational
units round results with round-to-zero (if 1) or round-to-nearest (if 0).

16 RND32 Rounding For 32-Bit Floating-Point Data Select. Selects whether the
computational units round floating-point data to 32 bits (if 1) or round
to 40 bits (if 0).

18–17 CSEL Bus Master Selection. These bits indicate whether the processor proces-
sor has control of the external bus as follows: 00 = processor is bus mas-
ter or 01, 10, 11 = processor is not bus master.

20–19 Reserved

21 PEYEN Processor Element Y Enable. Enables computations in PEy—SIMD
mode—(if 1) or disables PEy—SISD mode—(if 0).
When set, Processing Element Y (computation units and register files)
accepts instruction dispatches. When cleared, Processing
Element Y goes into a low power mode.

Table B-2. Mode Control 1 Register (MODE1) Bit Descriptions (Cont’d)

Bit Name Description

ADSP-2136x SHARC Processor Programming Reference B-7

Registers

Mode Mask Register (MMASK)
This is a non memory-mapped, universal, system register (Ureg and Sreg).
The reset value for this register is 0x0020 0000. Each bit in the MMASK reg-
ister corresponds to a bit in the MODE1 register. Bits that are set in the
MMASK register are used to clear bits in the MODE1 register when the proces-
sor’s status stack is pushed. This effectively disables different modes upon
servicing an interrupt, or when executing a PUSH STS instruction.

The processor’s status stack is pushed in two cases:

1. When executing a PUSH STS instruction explicitly in your code.

2. When an IRQ2–0 or timer expired interrupt occurs.

22 BDCST9 Broadcast Register Loads Indexed With I9 Enable. Enables (broadcast
I9 if set, = 1) or disables (no I9 broadcast if cleared, = 0) broadcast reg-
ister loads for loads that use the data address generator I9 index.
When the BDCST9 bit is set, data register loads from the PM data bus
that use the I9 DAG2 Index register are “broadcast” to a register or reg-
ister pair in each PE.

23 BDCST1 Broadcast Register Loads Indexed With I1 Enable. Enables (broadcast
I1 if set, = 1) or disables (no I1 broadcast if cleared, = 0) broadcast reg-
ister loads for loads that use the data address generator I1 index.
When the BDCST1 bit is set, data register loads from the DM data bus
that use the I1 DAG1 Index register are “broadcast” to a register or reg-
ister pair in each PE.

24 CBUFEN Circular Buffer Addressing Enable. Enables (circular if set, = 1) or dis-
ables (linear if cleared, = 0) circular buffer addressing for buffers with
loaded I, M, B, and L DAG registers.

31–25 Reserved

Table B-2. Mode Control 1 Register (MODE1) Bit Descriptions (Cont’d)

Bit Name Description

Control and Status System Registers

B-8 ADSP-2136x SHARC Processor Programming Reference

Example

Before the PUSH STS instruction, the MODE1 register is set to 0x01202811.
This MODE1 register value corresponds to the following configuration:

• Bit-reversing for I8

• Secondary registers for DAG2 (high)

• Interrupt nesting, ALU saturation

• Processor element Y single-instruction multiple-data (SIMD)

• Circular buffering

The MMASK register is set to 0x0020 2001 indicating that you want to dis-
able ALU saturation, SIMD, and bit reversing for I8 after pushing the
status stack. The value in the MODE1 register after PUSH STS is 0x0100
0810. The other settings that were previously in the MODE1 register remain
the same. The only bits that are affected are those that are set both in the
MMASK and in MODE1 registers. These bits are cleared after the status stack is
pushed. Figure B-3 and Figure B-4 provide bit information for the MMASK
register.

Note also that the reset value of the MMASK register is 0x0020 0000. If the
program does not make any changes to the MMASK register, the default set-
ting automatically disables SIMD when servicing any of the hardware
interrupts mentioned above, or during any push of the status stack.

ADSP-2136x SHARC Processor Programming Reference B-9

Registers

Figure B-3. MMASK Register Bits 31–16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

CSEL

PEYEN

BDCST9

RND32

BDCST1

CBUFEN

Reserved

Circular Buffer Addressing Enable
1=Enables circular buffering
0=Disables (linear) circular buffering

Broadcast Register Loads Indexed With I1 Enable
1=Broadcast I1
0=No I1 broadcast

Broadcast Register Loads Indexed With I9 Enable
1=Broadcast I9
0=No I9 broadcast Processor Element Y Enable

1=Enable PEy—SIMD mode
0=Disable PEy—SISD mode

Bus Master Code Selection
00=Processor is bus master
01, 10, 11=Processor is not
bus master

Reserved

Rounding For 32-Bit
Floating-Point Data Select
1=Round data to 32 bits
0=Round data to 40 bits

MMASK (Bits 31–16)

Control and Status System Registers

B-10 ADSP-2136x SHARC Processor Programming Reference

Figure B-4. MMASK Register Bits 15–0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BR0

SRCU

IRPTEN

BR8

ALUSAT

SSE

TRUNC
Truncation Rounding Mode
Select
1=Round-to-zero
0=Round-to-nearest

Fixed-Point Sign Extension
Select
1=Enable
0=Disable

ALU Saturation Select
1=Enable
0=Disable

Global Interrupt Enable
1=Enable
0=Disable

Secondary Registers
Computational Units Enable
1=Enable MR primary
0=Enable MR alternate

Bit Reverse Addressing for I0
1=Enable I0 (DAG1)
0=Disable I0 (DAG1)

Bit-Reverse Addressing for I8
1=Enable I8 (DAG2)
0=Disable I8 (DAG2)

NESTM
Nesting Multiple Interrupts Enable
1=Enable
0=Disable

SRD1H

SRD1L
Secondary Registers DAG1 Low
Enable
1=Enable DAG1 3–0 primary
0=Enable DAG1 3–0 alternate

Secondary Registers DAG1 High
Enable
1=Enable DAG1 7–4 primary
0=Enable DAG1 7–4 alternate

SRRFL
Secondary Registers Register File Low Enable
1=Enable R7–R0 primary
0=Enable R7–R0 secondary

SRD2H
Secondary Registers DAG2 High
Enable
1=Enable DAG2 15–12 primary
0=Enable DAG2 15–12 alternate

SRD2L
Secondary Registers DAG2 Low
Enable
1=Enable DAG2 11–8 primary
0=Enable DAG2 11–8 alternate

SRRFH
Secondary Registers Register File High Enable
1=Enable R15–R8 primary
0=Enable R15–R8 secondary

Reserved

MMASK (Bits 15-0)

ADSP-2136x SHARC Processor Programming Reference B-11

Registers

Mode Control 2 Register (MODE2)
The MODE2 register is a non memory-mapped, universal, system register
(Ureg and Sreg). The reset value for this register is 0x4200 0000.
Figure B-5 and Table B-3 provide bit information for the MODE2 register.

Table B-3. Mode Control 2 Register (MODE2) Bit Descriptions

Bit Name Description

0 IRQ0E IRQ0 Sensitivity Select. Selects sensitivity for the flag configured as
IRQ0 as edge-sensitive (if set, = 1) or level-sensitive (if cleared, = 0).

1 IRQ1E IRQ1 Sensitivity Select. Selects sensitivity for the flag configured as
IRQ1 as edge-sensitive (if set, = 1) or level-sensitive (if cleared, = 0).

2 IRQ2E IRQ2 Sensitivity Select. Selects sensitivity for the flag configured as
IRQ2 as edge-sensitive (if set, = 1) or level-sensitive (if cleared, = 0).

3 Reserved

4 CADIS Cache Disable. This bit disables the instruction cache (if set, = 1) or
enables the cache (if cleared, = 0).

5 TIMEN Timer Enable. Enables the timer (starts, if set, = 1) or disables the
timer (stops, if cleared, = 0).

18–6 Reserved

19 CAFRZ Cache Freeze. Freezes the instruction cache (retain contents if set,
= 1) or thaws the cache (allow new input if cleared, = 0).

20 IIRAE Illegal I/O Processor Register Access Enable. Enables (if set, = 1) or
disables (if cleared, = 0) detection of I/O processor register accesses. If
IIRAE is set, the processor flags an illegal access by setting the IIRA
bit in the STKYx register.

21 U64MAE Unaligned 64-Bit Memory Access Enable. Enables (if set, = 1) or dis-
ables (if cleared, = 0) detection of unaligned long word accesses.
If U64MAE is set, the processor flags an unaligned long word access
by setting the U64MA bit in the STKYx register.

31–22 Reserved

Control and Status System Registers

B-12 ADSP-2136x SHARC Processor Programming Reference

Arithmetic Status Registers (ASTATx and ASTATy)
The ASTATx and ASTATy registers are non memory-mapped, universal, sys-
tem registers (Ureg and Sreg). The reset value for these registers is
0x0000 0000. Each processing element has its own ASTAT register. The
ASTATx register indicates status for PEx operations while the ASTATy regis-
ter indicates status for PEy operations. Figure B-6 and Table B-4 provide
bit information for the ASTAT register.

Figure B-5. MODE2 Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRQ0E

CADIS

TIMEN

Reserved

Timer Enable
1=Enable (start)
0=Disable (stop)

Cache Disable
1=Disable cache
0=Enable cache

Interrupt Request
Sensitivity Select
1=IRQ 0 Edge-sensitive
0=IRQ 0 Level-sensitive

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 0 0 0 1 0 0 0 0 0 0 0 0

CAFRZ

Reserved

IIRAE

U64MAE

Reserved

Unaligned 64-Bit Memory Access Enable
1=Enable detection
0=Disable detection

Illegal IOP Register Access Enable
1=Enable detection
0=Disable detection

Cache Freeze
1=Freeze (retain contents)
0=Thaw (allow new data)

Reserved

MODE2

IRQ1E
Interrupt Request
Sensitivity Select
1=IRQ 1 Edge-sensitive
0=IRQ 1 Level-sensitive

IRQ2E
Interrupt Request
Sensitivity Select
1=IRQ 2 Edge-sensitive
0=IRQ 2 Level-sensitive

ADSP-2136x SHARC Processor Programming Reference B-13

Registers

If a program loads the ASTATx register manually, there is a one cycle effect
latency before the new value in the ASTATx register can be used in a condi-
tional instruction.

Figure B-6. ASTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AF

SV

SZ

SS
Shifter Input Sign

Shifter Zero

Shifter Overflow

ALU Floating-Point Operation

Reserved

MI
Multiplier Floating-Point Invalid Operation

MU
Multiplier Floating-Point Underflow

MV
Multiplier Overflow

AC

AN

AV

AZ
ALU Zero/Float-
ing-Point Underflow

ALU Overflow

ALU Negative

ALU Fixed-Point Carry

AS
ALU X-Input Sign
(for ABS and MANT)

AI
ALU Floating-Point
Invalid Operation

MN
Multiplier Negative

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BTF

ReservedCACC

Compare Accumulation Shift Bits
Bit Test Flag for System
Registers

Reserved

ASTATX/Y

Control and Status System Registers

B-14 ADSP-2136x SHARC Processor Programming Reference

Table B-4. ASTATx and ASTATy Register Bit Descriptions

Bit Name Description

0 AZ ALU Zero/Floating-Point Underflow. Indicates if the last ALU operation’s
result was zero (if set, = 1) or non-zero (if cleared, = 0). The ALU updates
AZ for all fixed-point and floating-point ALU operations. AZ can also indi-
cate a floating-point underflow. During an ALU underflow (indicated by a
set (= 1) AUS bit in the STKYx/y register), the processor sets AZ if the
floating-point result is smaller than can be represented in the output for-
mat.

1 AV ALU Overflow. Indicates if the last ALU operation’s result overflowed (if
set, = 1) or did not overflow (if cleared, = 0). The ALU updates AV for all
fixed-point and floating-point ALU operations. For fixed-point results, the
processor sets AV and the AOS bit in the STKYx/y register when the XOR
of the two most significant bits (MSBs) is a 1. For floating-point results, the
processor sets AV and the AVS bit in the STKYx/y register when the
rounded result overflows (unbiased exponent > 127).

2 AN ALU Negative. Indicates if the last ALU operation’s result was negative (if
set, = 1) or positive (if cleared, = 0). The ALU updates AN for all
fixed-point and floating-point ALU operations.

3 AC ALU Fixed-Point Carry. Indicates if the last ALU operation had a carry out
of the MSB of the result (if set, = 1) or had no carry (if cleared, = 0). The
ALU updates AC for all fixed-point operations. The processor clears AC
during the fixed-point logic operations: PASS, MIN, MAX, COMP, ABS,
and CLIP. The ALU reads the AC flag for the fixed-point accumulate oper-
ations: Addition with Carry and Fixed-point Subtraction with Carry.

4 AS ALU X-Input Sign (for ABS and MANT). Indicates if the last ALU ABS or
MANT operation’s input was negative (if set, = 1) or positive (if cleared,
= 0). The ALU updates AS only for fixed- and floating-point ABS and
MANT operations. The ALU clears AS for all operations other than ABS
and MANT.

ADSP-2136x SHARC Processor Programming Reference B-15

Registers

5 AI ALU Floating-Point Invalid Operation. Indicates if the last ALU opera-
tion’s input was invalid (if set, = 1) or valid (if cleared, = 0). The ALU
updates AI for all fixed- and floating-point ALU operations. The processor
sets AI and AIS in the STKYx/y register if the ALU operation:

• Receives a NAN input operand
• Adds opposite-signed infinities
• Subtracts like-signed infinities
• Overflows during a floating-point to fixed-point conversion when

saturation mode is not set
• Operates on an infinity when the saturation mode is not set

6 MN Multiplier Negative. Indicates if the last multiplier operation’s result was
negative (if set, = 1) or positive (if cleared, = 0). The multiplier updates MN
for all fixed- and floating-point multiplier operations.

7 MV Multiplier Overflow. Indicates if the last multiplier operation’s result over-
flowed (if set, = 1) or did not overflow (if cleared, = 0). The multiplier
updates MV for all fixed-point and floating-point multiplier operations.
For floating-point results, the processor sets MV and MVS in the STKYx/y
register if the rounded result overflows (unbiased exponent > 127). For
fixed-point results, the processor sets MV and the MOS bit in the STKYx/y
register if the result of the multiplier operation is:

• Twos-complement, fractional with the upper 17 bits of MR not all
zeros or all ones

• Twos-complement, integer with the upper 49 bits of MR not all
zeros or all ones

• Unsigned, fractional with the upper 16 bits of MR not all zeros
• Unsigned, integer with the upper 48 bits of MR not all zeros

If the multiplier operation directs a fixed-point result to an MR register, the
processor places the overflowed portion of the result in MR1 and MR2 for
an integer result or places it in MR2 only for a fractional result.

Table B-4. ASTATx and ASTATy Register Bit Descriptions (Cont’d)

Bit Name Description

Control and Status System Registers

B-16 ADSP-2136x SHARC Processor Programming Reference

8 MU Multiplier Floating-Point Underflow. Indicates if the last multiplier opera-
tion’s result underflowed (if set, = 1) or did not underflow
(if cleared, = 0). The multiplier updates MU for all fixed- and float-
ing-point multiplier operations. For floating-point results, the processor
sets MU and the MUS bit in the STKYx/y register if the floating-point
result underflows (unbiased exponent < –126). Denormal operands are
treated as zeros, therefore they never cause underflows. For fixed-point
results, the processor sets MU and the MUS bit in the STKYx/y register if
the result of the multiplier operation is:

• Twos-complement, fractional: with upper 48 bits all zeros or all
ones, lower 32 bits not all zeros

• Unsigned, fractional: with upper 48 bits all zeros, lower 32 bits
not all zeros

If the multiplier operation directs a fixed-point, fractional result to an MR
register, the processor places the underflowed portion of the result in MR0.

9 MI Multiplier Floating-Point Invalid Operation. Indicates if the last multi-
plier operation’s input was invalid (if set, = 1) or valid (if cleared, = 0).
The multiplier updates MI for floating-point multiplier operations. The
processor sets MI and the MIS bit in the STKYx/y register if the ALU oper-
ation:

• Receives a NAN input operand
• Receives an Infinity and zero as input operands

10 AF ALU Floating-Point Operation. Indicates if the last ALU operation was
floating-point (if set, = 1) or fixed-point (if cleared, = 0). The ALU updates
AF for all fixed-point and floating-point ALU operations.

11 SV Shifter Overflow. Indicates if the last shifter operation’s result overflowed
(if set, = 1) or did not overflow (if cleared, = 0). The shifter updates SV for
all shifter operations. The processor sets SV if the shifter operation:

• Shifts the significant bits to the left of the 32-bit fixed-point field
• Tests, sets, or clears a bit outside of the 32-bit fixed-point field
• Extracts a field that is past or crosses the left edge of the 32-bit

fixed-point field
• Performs a LEFTZ or LEFTO operation that returns a result of 32

12 SZ Shifter Zero. Indicates if the last shifter operation’s result was zero
(if set, = 1) or non-zero (if cleared, = 0). The shifter updates SZ for all
shifter operations. The processor also sets SZ if the shifter operation per-
forms a bit test on a bit outside of the 32-bit fixed-point field.

Table B-4. ASTATx and ASTATy Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-2136x SHARC Processor Programming Reference B-17

Registers

Sticky Status Registers (STKYx and STKYy)
These are non memory-mapped, universal, system registers (Ureg and
Sreg). The reset value for these registers is 0x0540 0000. Each processing
element has its own STKY register. The STKYx register indicates status for
PEx operations and some program sequencer stacks. The STKYy register
only indicates status for PEy operations.Figure B-8, Figure B-7, and
Table B-5 provide bit information for both the STKYx and STKYy registers.

STKY bits do not clear themselves after the condition they flag is no
longer true. They remain “sticky” until cleared by the program.

The processor sets a STKY bit in response to a condition. For example, the
processor sets the AUS bit in the STKY register when an ALU underflow set
AZ in the ASTAT register. The processor clears AZ if the next ALU operation
does not cause an underflow. The AUS bit remains set until a program

13 SS Shifter Input Sign. Indicates if the last shifter operation’s input was nega-
tive (if set, = 1) or positive (if cleared, = 0). The shifter updates SS for all
shifter operations.

17–14 Reserved

18 BTF Bit Test Flag for System Registers. Indicates if the system register bit is
true (if set, = 1) or false (if cleared, = 0). The processor sets BTF when the
bit(s) in a system register and value in the Bit Tst instruction match. The
processor also sets BTF when the bit(s) in a system register and value in the
Bit Xor instruction match.

23–19 Reserved

31–24 CACC Compare Accumulation Shift Register. Bit 31 of CACC indicates which
operand was greater during the last ALU compare operation: X input (if set,
= 1) or Y input (if cleared, = 0). The other seven bits in CACC form a
right-shift register, each storing a previous compare accumulation result.
With each new compare, the processor right shifts the values of CACC,
storing the newest value in bit 31 and the oldest value in bit 24.

Table B-4. ASTATx and ASTATy Register Bit Descriptions (Cont’d)

Bit Name Description

Control and Status System Registers

B-18 ADSP-2136x SHARC Processor Programming Reference

clears the STKY bit. Interrupt service routines (ISRs) must clear their inter-
rupt’s corresponding STKY bit so the processor can detect a reoccurrence of
the condition. For example, an ISR for a floating-point underflow excep-
tion interrupt (FLTUI) clears the AUS bit in the STKY register near the
beginning of the routine.

Figure B-7. STKYy Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Multiplier Floating-Point
Invalid Operation

MIS

Multiplier Floating-Point Underflow
MUS

AOS

ALU Floating-Point
Overflow

AUS

AVS

ALU Fixed-Point
Overflow

AIS
ALU Floating-Point
Invalid Operation

Multiplier Floating-Point Overflow
MVS

Reserved

Reserved
Multiplier Fixed-Point Overflow
MOS

ALU Floating-Point
Underflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 1 0 1 0 0 0 0 0

Reserved

STKYy

ADSP-2136x SHARC Processor Programming Reference B-19

Registers

Figure B-8. STKYx Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCEM

SSOV

LSOV
Loop Stack Overflow (Read-only)

Status Stack Overflow (Read-only)

PC Stack Empty (Read-only)
Not Sticky, cleared by push

Multiplier Floating-Point Invalid Operation
MIS

Multiplier Floating-Ppoint Underflow
MUS

U64MA

IIRA

CB15S

CB7s
DAG1 Circular Buffer 7
Overflow

DAG2 Circular Buffer 15
Overflow

Illegal Access Occurred
1=Illegal access occurred
0=No illegal access

Unaligned 64-Bit Memory
Access
1=Unaligned access occurred
0=No access occurred

AOS

ALU Floating-Point
Overflow

AUS

AVS

ALU Floating-Point
Underflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 1 0 1 0 0 0 0 0

Reserved

LSEM
Loop Stack Empty (Read-only)

Reserved

PCFL
PC Stack Full (Read-only)
Not Sticky, cleared by pop

SSEM
Status Stack Empty (Read-only)

ALU Fixed-Point
Overflow

AIS
ALU Floating-Point Invalid Operation

Multiplier Floating-Point Overflow
MVS

Reserved

ReservedMultiplier Fixed-Point Overflow
MOS

STKYx

Control and Status System Registers

B-20 ADSP-2136x SHARC Processor Programming Reference

Table B-5. STKYx and STKYy Register Bit Descriptions

Bit Name Description: √ shows bits in both STKYx/y
 × shows bits in STKYx only

0 AUS ALU Floating-Point Underflow. A sticky indicator for the ALU
AS bit. For more information, see “AZ” on page 14.

√

1 AVS ALU Floating-Point Overflow. A sticky indicator for the ALU AV
bit. For more information, see “AV” on page 14.

√

2 AOS ALU Fixed-Point Overflow. A sticky indicator for the ALU AV
bit. For more information, see “AV” on page 14.

√

4–3 Reserved

5 AIS ALU Floating-Point Invalid Operation. A sticky indicator for the
ALU AI bit. For more information, see “AI” on page 15.

√

6 MOS Multiplier Fixed-Point Overflow. A sticky indicator for the multi-
plier MV bit. For more information, see “MV” on page 15.

√

7 MVS Multiplier Floating-Point Overflow. A sticky indicator for the
multiplier MV bit. For more information, see “MV” on page 15.

√

8 MUS Multiplier Floating-Point Underflow. A sticky indicator for the
multiplier MU bit. For more information, see “MU” on page 16.

√

9 MIS Multiplier Floating-Point Invalid Operation. A sticky indicator
for the multiplier MI bit. For more information, see “MI” on
page 16.

√

16–10 Reserved

17 CB7S DAG1 Circular Buffer 7 Overflow. Indicates if a circular buffer
being addressed with DAG1 register I7 has overflowed (if set, = 1)
or has not overflowed (if cleared, = 0). A circular buffer overflow
occurs when DAG circular buffering operation increments the I
register past the end of buffer.

×

18 CB15S DAG2 Circular Buffer 15 Overflow. Indicates if a circular buffer
being addressed with DAG2 register I15 has overflowed (if set,
= 1) or has not overflowed (if cleared, = 0). A circular buffer over-
flow occurs when DAG circular buffering operation increments
the I register past the end of buffer.

×

ADSP-2136x SHARC Processor Programming Reference B-21

Registers

User-Defined Status Registers (USTATx)
These are non memory-mapped, universal, system registers (Ureg and
Sreg). The reset value for these registers is 0x0000 0000. The USTATx reg-
isters are user-defined, general-purpose status registers. Programs can use
these 32-bit registers with bit-wise instructions (SET, CLEAR, TEST, and oth-
ers). Often, programs use these registers for low overhead, general-purpose
flags or for temporary 32-bit storage of data.

19 IIRA Illegal IOP Register Access. Indicates if set (= 1) if a core, host, or
multiprocessor access to I/O processor registers has occurred or
has not occurred (if 0).

×

20 U64MA Unaligned 64-Bit Memory Access. Indicates if set (= 1) if a Nor-
mal word access with the LW mnemonic addressing an uneven
memory address has occurred or has not occurred (if 0).

×

21 PCFL PC Stack Full. Indicates if the PC stack is full (if 1) or not full (if
0)—Not a sticky bit, cleared by a Pop.

×

22 PCEM PC Stack Empty. Indicates if the PC stack is empty (if 1) or not
empty (if 0)—Not sticky, cleared by a Push.

×

23 SSOV Status Stack Overflow. Indicates if the status stack is overflowed
(if 1) or not overflowed (if 0)—sticky bit.

×

24 SSEM Status Stack Empty. Indicates if the status stack is empty (if 1) or
not empty (if 0)—not sticky, cleared by a Push.

×

25 LSOV Loop Stack Overflow. Indicates if the loop counter stack and loop
stack are overflowed (if 1) or not overflowed (if 0)—sticky bit.

×

26 LSEM Loop Stack Empty. Indicates if the loop counter stack and loop
stack are empty (if 1) or not empty (if 0)—not sticky, cleared by a
Push.

×

31–27 Reserved

Table B-5. STKYx and STKYy Register Bit Descriptions (Cont’d)

Bit Name Description: √ shows bits in both STKYx/y
 × shows bits in STKYx only

Processing Element Registers

B-22 ADSP-2136x SHARC Processor Programming Reference

Processing Element Registers
Except for the PX register, the processor’s processing element registers
store data for each element’s ALU, multiplier, and shifter. The inputs and
outputs for processing element operations go through these registers. The
PX register lets programs transfer data between the data buses, but cannot
be an input or output in a calculation.

Data File Data Registers (Rx, Fx, Sx)
The data file data registers are non memory-mapped, universal, data regis-
ters (Ureg and Dreg). Each of the processor’s processing elements has a
data register file—a set of 40-bit data registers that transfer data between
the data buses and the computation units. These registers also provide
local storage for operands and results.

The R, F, and S prefixes on register names do not effect the 32-bit or
40-bit data transfer; the naming convention determines how the ALU,
multiplier, and shifter treat the data and determines which processing ele-
ment’s data registers are being used. For more information on how to use
these registers, see “Data Register File” on page 2-37.

Multiplier Results Registers (MRFx, MRBx)
The MRFx and MRBx registers are non memory-mapped, universal, data reg-
isters (Ureg and Dreg). Each of the processor’s multipliers has a primary or
foreground (MRF) register and alternate or background (MRB) results regis-
ter. As shown in Figure B-9, fixed-point operations place 80-bit results in
the multiplier’s foreground MRF register or background MRB register,
depending on which is active. For more information on selecting the
result register, see “Alternate (Secondary) Data Registers” on page 2-39.
For more information on result register fields, see “Data Register File” on
page 2-37.

ADSP-2136x SHARC Processor Programming Reference B-23

Registers

Program Memory Bus Exchange Register (PX)
The PX register is a non memory-mapped, universal registers (Ureg only).
The PM bus exchange (PX) register permits data to flow between the PM
and DM data buses. The PX register can work as one 64-bit register or as
two 32-bit registers (PX1 and PX2). The PX1 register is the lower 32 bits of
the PX register and PX2 is the upper 32 bits of PX. See the section “Internal
Data Bus Exchange” on page 5-7 for more information about the PX
register.

Figure B-9. MRFx and MRBx Registers

MV SET

0316379

8 BITS32 BITS

REGISTER FILE
PLACEMENT

MRF OR MRB
PLACEMENT

BINARY POINT

MR2

OVERFLOW INTEGER RESULT

MR1 MR0

INTEGER RESULT

UREG ZEROS

OVERFLOW (IS LOST) INTEGER RESULT

INTEGER MULTIPLIER FIXED-POINT RESULT PLACEMENT

FRACTIONAL MULTIPLIER FIXED-POINT RESULT PLACEMENT

BINARY POINT

MV SET

0316379

8 BITS32 BITS

REGISTER FILE
PLACEMENT

MRF OR MRB
PLACEMENT

OVERFLOW

MR2 MR1 MR0

UREG ZEROS

FRACTIONAL RESULT

FRACTIONAL RESULT

FRACTIONAL RESULT

UNDERFLOW (IS LOST)

BINARY POINT

Program Sequencer Registers

B-24 ADSP-2136x SHARC Processor Programming Reference

Program Sequencer Registers
The processor’s program sequencer registers, listed in Table B-6 and
Table B-7, direct the execution of instructions. These registers include
support for the:

• Instruction pipeline

• Program and loop stacks

• Timer

• Interrupt mask and latch

Table B-6. Program Sequencer Registers

Register Initialization After Reset

Interrupt Latch Register (IRPTL) 0x0000 0000 (cleared)

Interrupt Mask Register (IMASK) 0x0000 0003

Interrupt Mask Pointer Register (IMASKP) 0x0000 0000 (cleared)

Interrupt Register (LIRPTL) 0x0000 0000 (cleared)

Flag Value Register (FLAGS) 0x0000 000n

Table B-7. Program Counter Registers

Register Initialization After Reset

“Program Counter Register (PC)” on page B-30 Undefined

“Program Counter Stack Register (PCSTK)” on page B-30 Undefined

“Program Counter Stack Pointer Register (PCSTKP)” on page B-31 Undefined

“Fetch Address Register (FADDR)” on page B-31 Undefined

“Decode Address Register (DADDR)” on page B-32 Undefined

“Loop Address Stack Register (LADDR)” on page B-32 Undefined

“Current Loop Counter Register (CURLCNTR)” on page B-32 Undefined

ADSP-2136x SHARC Processor Programming Reference B-25

Registers

Flag Value Register (FLAGS)
The FLAGS register is a non memory-mapped, universal, system register
(Ureg and Sreg). At reset:

• FLG0 bit is FLAG0 pin value

• FLG1 bit is FLAG1 pin value

• FLG2 bit is FLAG2 pin value

• FLG3 bit is FLAG3 pin value

• Other FLGx bit values are unknown

• FLGx0 bits are zero

The FLAGS register indicates the state of the FLAGx pins. When a FLAGx pin
is an output, the processor outputs a high in response to a program setting
the bit in FLAGS. The I/O direction (input or output) selection of each bit
is controlled by its FLGxO bit in the FLAGS register. The FLAGS register bit
definitions are given in Figure B-10.

There are 16 flags in ADSP-2136x processors. All are muxed with other
pins. The FLAG0–3 pins have four dedicated pins. The FLAG10–15 pins are
accessible to the signal routing unit (SRU). All 16 flags are routed to the
AD pins when the PPFLGS bit in the SYSCTL register (= 1). While this bit is
set, the parallel port is not operational and the four dedicated FLAG0–3
pins switch to their alternate state: IRQ0, IRQ1, IRQ2, and TIMEXP.

“Loop Counter Register (LCNTR)” on page B-33 Undefined

“Timer Period Register (TPERIOD)” on page B-33 Undefined

“Timer Count Register (TCOUNT)” on page B-33 Undefined

Table B-7. Program Counter Registers (Cont’d)

Register Initialization After Reset

Program Sequencer Registers

B-26 ADSP-2136x SHARC Processor Programming Reference

When the SPIPDN bit (bit 30 in the PMCTL register) is set (= 1 which shuts
down the clock to the SPI), the FLAGx pins cannot be used (via the
FLAGS7–0 register bits) because the FLAGx pins are synchronized with the
clock.

Programs cannot change the output selects of the FLAGS register
and provide a new value in the same instruction. Instead, programs
must use two write instructions—the first to change the output
select of a particular FLAG pin, and the second to provide the new
value.

ADSP-2136x SHARC Processor Programming Reference B-27

Registers

Figure B-10. FLAGS Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U0 U 0 U 0 U 0 U 0 U 0 U 0 U 0

FLG15O
FLAG15 Output Select
FLG15
FLAG15 Value

FLG14O
FLAG14 Output Select

FLG14
FLAG14 Value

FLG13O
FLAG13 Output Select

FLG13
FLAG13 Value

FLG12O
FLAG12 Output Select

FLG12
FLAG12 Value

FLG8
FLAG8 Value
FLG8O
FLAG8 Output Select
FLG9
FLAG9 Value

FLG9O
FLAG9 Output Select
FLG10
FLAG10 Value

FLG10O
FLAG10 Output Select

FLG11
FLAG11 Value

FLG11O
FLAG11 Output Select

-For all FLGx bits, FLAGx values are as follows: 0=LOW, 1=HIGH.
-For all FLGxO bits, FLAGx output selects are as follows: 0=FLAGx Input, 1=FLAGx Output.
-U indicates the bit value is unknown at reset.

FLAGS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U0 U 0 U 0 U 0 U 0 U 0 U 0 U 0

FLG7O
FLAG7 Output Select
FLG7
FLAG7 Value
FLG6O
FLAG6 Output Select
FLG6
FLAG6 Value
FLG5O
FLAG5 Output Select
FLG5
FLAG5 Value
FLG4O
FLAG4 Output Select
FLG4
FLAG4 Value

FLG0
FLAG0 Value

FLG0O
FLAG0 Output Select
FLG1
FLAG1 Value

FLG1O
FLAG1 Output Select

FLG2
FLAG2 Value

FLG2O
FLAG2 Output Select

FLG3
FLAG3 Value

FLG3O
FLAG3 Output Select

Program Sequencer Registers

B-28 ADSP-2136x SHARC Processor Programming Reference

Table B-8. FLAGS Register Bit Descriptions

Bit Name Description

0 FLG0 FLAG0 Value. Indicates the state of the FLAG0 pin—high (if set, = 1) or
low (if cleared, = 0).

1 FLG0O FLAG0 Output Select. Selects the I/O direction for the FLAG0 pin, the
flag is programmed as an output (if set, = 1) or input (if cleared, = 0).

2 FLG1 FLAG1 Value. Indicates the state of the FLAG1 pin—high (if set, = 1) or
low (if cleared, = 0).

3 FLG1O FLAG1 Output Select. Selects the I/O direction for the FLAG1 pin—an
output (if set, = 1) or input (if cleared, = 0).

4 FLG2 FLAG2 Value. Indicates the state of the FLAG2 pin—high (if set, = 1) or
low (if cleared, = 0).

5 FLAG2O FLAG2 Output Select. Selects the I/O direction for the FLAG2 pin—
output (if set, = 1) or input (if cleared, = 0).

6 FLAG3 FLAG3 Value. Indicates the state of the FLAG3 pin—high (if set, = 1) or
low (if cleared, = 0).

7 FLG3O FLAG3 Output Select. Selects the I/O direction for the FLAG3 pin—
output (if set, = 1) or input (if cleared, = 0).

8 FLG4 FLAG4 Value. Indicates the state of the FLAG4 pin—high (if set, = 1) or
low (if cleared, = 0).

9 FLG4O FLAG4 Output Select. Selects the I/O direction for the FLAG4 pin—
output (if set, = 1) or input (if cleared, = 0).

10 FLG5 FLAG5 Value. Indicates the state of the FLAG5 pin—high (if set, = 1) or
low (if cleared, = 0).

11 FLG5O FLAG5 Output Select. Selects the I/O direction for the FLAG5 pin—
output (if set, = 1) or input (if cleared, = 0).

12 FLG6 FLAG6 Value. Indicates the state of the FLAG6 pin—high (if set, = 1) or
low (if cleared, = 0).

13 FLG6O FLAG6 Output Select. Selects the I/O direction for the FLAG6 pin—
output (if set, = 1) or input (if cleared, = 0).

14 FLG7 FLAG7 Value. Indicates the state of the FLAG7 pin—high (if set, = 1) or
low (if cleared, = 0).

ADSP-2136x SHARC Processor Programming Reference B-29

Registers

15 FLG7O FLAG7 Output Select. Selects the I/O direction for the FLAG7 pin—
output (if set, = 1) or input (if cleared, = 0).

16 FLG8 FLAG8 Value. Indicates the state of the FLAG8 pin—high (if set, = 1) or
low (if cleared, = 0).

17 FLG8O FLAG8 Output Select. Selects the I/O direction for FLAG8—output (if
set, = 1) or an input (if cleared, = 0).

18 FLG9 FLAG9 Value. Indicates the state of the FLAG9 pin—high (if set, = 1) or
low (if cleared, = 0).

19 FLG9O FLAG9 Output Select. Selects the I/O direction for FLAG9—output (if
set, = 1) or input (if cleared, = 0).

20 FLG10 FLAG10 Value. Indicates the state of the FLAG10 pin—high (if set, = 1)
or low (if cleared, = 0).

21 FLG10O FLAG10 Output Select. Selects the I/O direction for FLAG10—output
(if set, = 1) or an input (if cleared, = 0).

22 FLG11 FLAG11 Value. Indicates the state of the FLAG11 pin—high (if set, = 1)
or low (if cleared, = 0).

23 FLG11O FLAG11 Output Select. Selects the I/O direction for the FLAG11—out-
put (if set, = 1) or an input (if cleared, = 0).

24 FLG12 FLAG12 Value. Indicates the state of the FLAG12 pin—high (if set, = 1)
or low (if cleared, = 0).

25 FLG12O FLAG12 Output Select. Selects the I/O direction for FLAG12—output
(if set, = 1) or input (if cleared, = 0).

26 FLG13 FLAG13 Value. Indicates the state of the FLAG13 pin—high (if set, = 1)
or low (if cleared, = 0).

27 FLG13O FLAG13 Output Select. Selects the I/O direction for FLAG13—output
(if set, = 1) or an input (if cleared, = 0).

28 FLG14 FLAG14 Value. Indicates the state of the FLAG14 pin—high (if set, = 1)
or low (if cleared, = 0).

29 FLG14O FLAG14 Output Select. Selects the I/O direction for FLAG14—output
(if set, = 1) or input (if cleared, = 0).

Table B-8. FLAGS Register Bit Descriptions (Cont’d)

Bit Name Description

Program Sequencer Registers

B-30 ADSP-2136x SHARC Processor Programming Reference

Program Counter Register (PC)
The PC register is a non memory-mapped, universal register (Ureg only).
The program counter register is the last stage in the fetch-decode-execute
instruction pipeline and contains the 24-bit address of the instruction that
the processor executes on the next cycle. The PC couples with the program
counter stack, PCSTK, which stores return addresses and top-of-loop
addresses. All addresses generated by the sequencer are 24-bit program
memory instruction addresses.

As shown in Figure B-11, the address buses can handle 32-bit addresses,
but the program sequencer only generates 24-bit addresses over the PM
bus.

Program Counter Stack Register (PCSTK)
This is a non memory-mapped, universal register (Ureg only). The pro-
gram counter stack register contains the address of the top of the PC stack.
This is a readable and writable register.

Manipulation of these stacks by using push/pop instructions and
explicit writes to these stacks may affect the correct functioning of
the loop.

30 FLG15 FLAG15 Value. Indicates the state of the FLAG15 pin—high (if set, = 1)
or low (if cleared, = 0).

31 FLG15O FLAG15 Output Select. Selects the I/O direction for FLAG15—output
(if set, = 1) or input (if cleared, = 0).

Table B-8. FLAGS Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-2136x SHARC Processor Programming Reference B-31

Registers

Program Counter Stack Pointer Register (PCSTKP)
The PCSTKP register is a non memory-mapped, universal register (Ureg
only). The program counter stack pointer register contains the value of
PCSTKP. This value is given as follows: 0 when the PC stack is empty, 1...30
when the stack contains data, and 31 when the stack overflows. This regis-
ter is readable and writable. A write to PCSTKP takes effect after a one-cycle
delay. If the PC stack is overflowed, a write to PCSTKP has no effect.

Fetch Address Register (FADDR)
The FADDR register is a non memory-mapped, universal register (Ureg
only). The fetch address register is the first stage in the fetch-decode-exe-
cute instruction pipeline and contains the 24-bit address of the instruction
that the processor fetches from memory on the next cycle.

Figure B-11. PM and DM Bus Addresses Versus Sequencing Addresses

PM and DM Address Buses and DAGs Can Handle 32-Bit Addresses

Program Sequencer Handles

S Field

Bits 20–18, System (Internal) Memory

Bits 31–21, All zeros

31 23 21 20 18 17 0

System Values in this field have
the following meaning:

000- Address of an IOP register
001- Address in Long Word space
01x- Address in Normal Word space
1xx- Address in Short Word space

24-Bit Addresses

Program Sequencer Registers

B-32 ADSP-2136x SHARC Processor Programming Reference

Decode Address Register (DADDR)
The DADDR register is a non memory-mapped, universal register (Ureg
only). The decode address register is the second stage in the
fetch-decode-execute instruction pipeline and contains the 24-bit address
of the instruction that the processor decodes on the next cycle.

Loop Address Stack Register (LADDR)
The LADDR register, described in Table B-9, is a non memory-mapped,
universal register (Ureg only). The loop address stack is six levels deep by
32 bits wide. The 32-bit word of each level consists of a 24-bit loop termi-
nation address, a 5-bit termination code, and a 2-bit loop type code.

Current Loop Counter Register (CURLCNTR)
The CURLCNTR register is a non memory-mapped, universal register (Ureg
only). The current loop counter register provides access to the loop
counter stack and tracks iterations for the DO UNTIL LCE loop being exe-
cuted. For more information on how to use the CURLCNTR register, see
“Loop Status” on page 3-56.

Table B-9. LADDR Register Bit Descriptions

Bits Value

23–0 Loop Termination Address

28–24 Termination Code

31–29 Loop Type Code
000 = arithmetic condition-based (not LCE)
010 = counter-based, length 1
100 = counter-based, length 2
110 = counter-based, length 3
111 = counter-based, length > 3

ADSP-2136x SHARC Processor Programming Reference B-33

Registers

Loop Counter Register (LCNTR)
The LCNTR register is a non memory-mapped, universal register (Ureg
only). The loop counter register provides access to the loop counter stack
and holds the count value before the DO UNTIL LCE loop is executed. For
more information on how to use the LCNTR register, see “Loop Status” on
page 3-56.

Timer Period Register (TPERIOD)
The TPERIOD register is a non memory-mapped, universal register (Ureg
only). The timer period register contains the timer period, indicating the
number of cycles between timer interrupts. For more information on how
to use the TPERIOD register, see “Timer and Sequencing” on page 7-3.

Timer Count Register (TCOUNT)
The TCOUNT register is a non memory-mapped, universal register (Ureg
only). The timer count register contains the decrementing timer count
value, counting down the cycles between timer interrupts. For more infor-
mation on how to use the TCOUNT register, see “Timer and Sequencing” on
page 7-3.

Data Address Generator Registers

B-34 ADSP-2136x SHARC Processor Programming Reference

Data Address Generator Registers
The processor’s data address generator (DAG) registers hold data
addresses, modify values, and circular buffer configurations. Using these
registers, the DAGs can automatically increment addressing for ranges of
data locations (a buffer).

Index Registers (Ix)
The Ix registers are non memory-mapped, universal registers (Ureg only).
The DAGs store addresses in index registers (I0–I7 for DAG1 and I8–I15
for DAG2). An index register holds an address and acts as a pointer to a
memory location. For more information, see “Data Address Generators”
in Chapter 4, Data Address Generators.

Modify Registers (Mx)
The Mx register are non memory-mapped, universal registers (Ureg only).
The DAGs update stored addresses using modify registers (M0–M7 for
DAG1 and M8–M15 for DAG2). A modify register provides the increment
or step size by which an index register is pre- or post-modified during a
register move. For more information, see “Data Address Generators” in
Chapter 4, Data Address Generators.

Length and Base Registers (Lx, Bx)
The Lx and Bx registers are non memory-mapped, universal registers (Ureg
only). The DAGs control circular buffering operations with length and
base registers (L0–L7 and B0–B7 for DAG1 and L8–L15 and B8–B15 for
DAG2). Length and base registers set up the range of addresses and the
starting address for a circular buffer. For more information, see “Data
Address Generators” in Chapter 4, Data Address Generators.

ADSP-2136x SHARC Processor Programming Reference B-35

Registers

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of three identical timer units. Each timer has four 32-bit
memory-mapped registers. They are described in the following sections.

Timer Configuration Registers (TMxCTL)
All timer clocks are gated off when the specific timer’s configuration regis-
ter is set to zero at system reset or subsequently reset by user programs.
These registers are shown in Figure B-12.

Figure B-12. Timer Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMODE

AUX

Interrupt Enable
1=Enable
0=Disable

Timer Input Select
1=Sample AUX_IN
0=Sample TMRx

PRDCNT

Pulse Edge Select
1=Positive active pulse
0=Negative active pulse

Timer Mode
00=Reset
01=PWM_OUT mode (TIMODEPWM)
10=WDTH_CAP mode (TIMODEW)
11=EXT_CLK mode (TIMODEEXT)

PULSE

Period Count
1=Count to end of period
0=Count to end of width

Reserved

IRQEN

TM0CTL (0x1401)
TM1CTL (0x1409)
TM2CTL (0x1411)

Timer Registers

B-36 ADSP-2136x SHARC Processor Programming Reference

Timer Counter Registers (TMxCNT)
The addresses for these registers are: TM0CNT = 0x1402, TM1CNT = 0x140A,
and TM2CNT = 0x1412. When disabled, the timer counter retains its state.
When re-enabled, the timer counter is reinitialized from the period/width
registers based on configuration and mode. The timer counter value
should not be set directly by the software. It can be set indirectly by ini-
tializing the period or width values in the appropriate mode. The counter
should only be read when the respective timer is disabled. This prevents
erroneous data from being returned.

Timer Period Registers (TMxPRD)
The addresses for these registers are: TM0PRD = 0x1403, TM1PRD = 0x140B,
and TM2PRD = 0x1413. Once a timer is enabled and running, when the
processor writes new values to the timer period and pulse width registers,
the writes are buffered and do not update the registers until the end of the
current period (when the timer counter register equals the timer period
register).

During the pulse width modulation (PWM_OUT), the period value is
written into the timer period registers. Both period and width register val-
ues must be updated “on the fly” since the period and width (duty cycle)
change simultaneously. To insure the period and width value concurrency,
a 32-bit period buffer and a 32-bit width buffer are used.

During the pulse width and period capture (WDTH_CAP) mode, the
period values are captured at the appropriate time. Since both the period
and width registers are read-only in this mode, the existing 32-bit period
and width buffers are used.

During the external event watchdog (EXT_CLK) mode, the period register
is write-only. Therefore, the period buffer is used in this mode to insure
high/low period value coherency.

ADSP-2136x SHARC Processor Programming Reference B-37

Registers

Timer Width Register (TMxW)
The addresses for these registers are: TM0W = 0x1404, TM1W = 0x140C,
TM2W = 0x1414. During the pulse width modulation (PWM_OUT), the
width value is written into the timer width registers. Both width and
period register values must be updated “on the fly” since the period and
width (duty cycle) change simultaneously. To insure period and width
value concurrency, a 32-bit period buffer and a 32-bit width buffer are
used.

During the pulse width and period capture (WDTH_CAP) mode, both the
period and width values are captured at the appropriate time. Since both
the width and period registers are read-only in this mode, the existing
32-bit period and width buffers are used.

During the EXT_CLK mode, the width register is unused.

Timer Global Status and Control Register (TMSTAT)
The global status register TMSTAT is addressable at address 0x1400 and is
shown in Figure B-13. Status bits are sticky and require a write-one to
clear operation. During a status register read access, all reserved or unused
bits return a zero. The reset state is 0x0000. Each timer generates a unique
processor interrupt request signal, TIMxIRQ.

A common status register latches these interrupts. Interrupt bits are sticky
and must be cleared to assure that the interrupt is not reissued.

Each timer is provided with its own sticky status register TIMxEN bit. To
enable or disable an individual timer, the TIMxEN bit is set or cleared. For
example, writing a one to bit 8 sets the TIM0EN bit; writing a one to bit 9
clears it. Writing a one to both bit 8 and bit 9 clears TIM0EN. Reading the
status register returns the TIM0EN state on both bit 8 and bit 9. The
remaining TIMxEN bits operate similarly using bit 10 and bit 11 for timer1,
and bit 12 and bit 13 for TIMER2.

Power Management Registers

B-38 ADSP-2136x SHARC Processor Programming Reference

Power Management Registers
The following sections describe the registers associated with the processors
power management functions.

Power Management Control Register (PMCTL)
The power management control register is a 32-bit memory-mapped regis-
ter. The PMCTL register’s addresses is 0x2000. This register contains bits to
control the phase lock loop (PLL) multiplier and divider (both input and

Figure B-13. TMSTAT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIM2DIS
Reserved

TIM2EN

Timer 2 Disable
Write 1 to Disable

Timer 2 Enable
Write 1 to Enable

TIM1DIS

TIM1EN

Timer 1 Disable
Write 1 to Disable

Timer 1 Enable
Write 1 to Enable

TIM0DIS

TIM0EN

Timer 0 Disable
Write 1 to Disable

Timer 0 Enable
Write 1 to Enable

Reserved

TIM0IRQ
Timer 0 Interrupt
Write 1 to Clear

TIM1IRQ
Timer 1 Interrupt
Write 1 to Clear

TIM2IRQ
Timer 2 Interrupt
Write 1 to Clear

TIM0OVF
Timer 0 Counter
Overflow Error

TIM1OVF
Timer 1 Counter
Overflow Error

TIM2OVF
Timer 2 Counter
Overflow Error

Reserved

TMSTAT(0x1400)

ADSP-2136x SHARC Processor Programming Reference B-39

Registers

output) values, PLL bypass mode, and clock enable control for peripherals
(see Figure B-14 and Table B-10). This register also contains status bits,
which keep track of the status of the CLK_CFG pins (read-only).

The core can write to all bits except the read-only status bits. The DIVEN
bit is a logical bit, that is, it can be set, but on reads it always responds
with zero.

Figure B-14. PMCTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRPDN

PLLBP

Timer Enable/Disable

CLKOUTEN

Reserved

Clockout Enable

DIVEN

CRAT
PLL Clock Ratio

SRCPDN
Clock to SRC
Enable/Disable

PLLM
PLL Multiplier

SPIPDN
SPI Enable/Disable

SP3PDN
SP4–5 Enable/Disable
SP2PDN
SP2–3 Enable/Disable

PPPDN
PP Enable/Disable

SP1PDN
SP0–1 Enable/Disable

Reserved

PLL Divider Enable

PLLDx
Divide by 1, 2, 4, or 8

INDIV
Input Divider

PMCTL (0x2000)

PWM
PWM Enable

Reserved

Power Management Registers

B-40 ADSP-2136x SHARC Processor Programming Reference

Table B-10. PMCTL Register Bit Descriptions

Bit Name Description

5–0 PLLM PLL Multiplier. Read/Write
PLLM = 0 PLL Multiplier = 64
0<PLLM<63 PLL Multiplier = PLLM
CLK_CFG1–0
00 = 0000110
01 = 100000
10 = 010000
11 = 000110

7–6 PLLDx PLL Divider. Read/Write
00 = CK divider = 1
01 = CK divider = 2
10 = CK divider = 4
11 = CK divider = 8
CLK_CFG1–0 reset value x x 00

8 INDIV Input Divisor. Read/Write
0 = Divide by 1
1 = Divide by 2
Reset value = 0

9 DIVEN Enable PLL Divider Value Loading. Read/Write
0 = Do not load PLLDx
1 = Load PLLDx
Reset value = 0

11–10 Reserved

12 CLKOUTEN Clockout Enable. Read/Write
Mux select for CLKOUT and RESETOUT
0 Mux output = RESETOUT
1 Mux output = CLKOUT
Reset value = 0

14 –13 Reserved

15 PLLBP PLL Bypass Mode Indication. Read/Write
0 = PLL is in normal mode
1 = Put PLL in bypass mode
Reset value = 0

ADSP-2136x SHARC Processor Programming Reference B-41

Registers

17–16 CRAT PLL Clock Ratio (CLKIN to CK). Read only. For more
detail refer to the ADSP-2136x clock configuration pin
description.
Reset value = CLK_CFG1–0

22–18 Reserved

23 PWMDN PWM Enable/Disable. Shutdown clock to pulse width
modulator.

24 Reserved

25 SRCOFF SRC Enable/Disable. Shutdown clock to asynchronous
sample rate converter.

26 PPPDN PP Enable/Disable. Read/Write
0 = Parallel port is in normal mode
1 = Shutdown clock to parallel port
Reset value = 0

27 SP1PDN SP1 Enable/Disable. Read/Write
0 = SP0–1 are in normal mode
1 = Shutdown clock to SP0–1
Reset value = 0

28 SP2PDN SP2 Enable/Disable. Read/Write
0 = SP2–3 are in normal mode
1 = Shutdown clock to SP2–3
Reset value = 0

29 SP3PDN SP3 Enable/Disable. Read/Write
0 = SP4–5 are in normal mode
1 = Shutdown clock to SP4–5
Reset value = 0

Table B-10. PMCTL Register Bit Descriptions (Cont’d)

Bit Name Description

Power Management Registers

B-42 ADSP-2136x SHARC Processor Programming Reference

Revision ID Register (REVPID)
The REVPID register is top layer metal programmable 8-bit register.
Because REVPID register bits 7–0 are the processor ID and silicon revision,
the reset value varies with the system setting and silicon revision, that is, if
value in top-level metal layer changes. External devices can poll this regis-
ter for the processor’s ID and silicon revision numbers.

As it is shown in Table B-11, the bit position from 0–3 signifies the Pro-
cessor id. For ADSP-2136x processors, the process id is 0010. Bit
positions 4–7 signify the silicon revision id.

30 SPIPDN SPI Enable/Disable. Read/Write
0 = SPI is in normal mode
1 = Shutdown clock to SPI
NOTE: When this bit is set (= 1), the FLAGx pins cannot
be used (via the FLAGS7–0 register bits) because the
FLAGx pins are synchronized with the clock. See “Flag
Value Register (FLAGS)” on page B-25.
Reset value = 0

31 TMRPDN Timer Enable/Disable. Read/Write
0 = Timer is in normal mode
1 = Shutdown clock to Timer
Reset value = 0

Table B-11. REVPID Register Bit Descriptions

Bits Name Description

3–0 PID Processor Identification (Read only) PID

7–4 Silicon
Revision

Silicon Revision

Table B-10. PMCTL Register Bit Descriptions (Cont’d)

Bit Name Description

ADSP-2136x SHARC Processor Programming Reference B-43

Registers

I/O Processor Registers
The I/O processor’s registers are accessible as part of the processor’s mem-
ory map. These registers occupy addresses 0x0000 0000 through
0x0003 FFFF of the memory map. The I/O registers control the following
DMA operations: parallel port, serial port, serial peripheral interface port
(SPI), and input data port (IDP). The register information for the IOP
and all of the peripherals associated with a specific ADSP-2136x SHARC
processor is located in the processor specific ADSP-2136x SHARC Proces-
sor Hardware Reference. For more information, see “Related Documents”
on page xxix.

I/O Processor Registers

B-44 ADSP-2136x SHARC Processor Programming Reference

ADSP-2136x SHARC Processor Programming Reference G-1

G GLOSSARY

Arithmetic Logic Unit (ALU).

This part of a processing element performs arithmetic and logic operations
on fixed-point and floating-point data.

Asynchronous Transfers.

Communications in which data can be transmitted intermittently rather
than in a steady stream.

Auxiliary Registers.

See index registers on page G-8.

Base Address.

The starting address of a circular buffer to which the DAG wraps around.
This address is stored in a DAG Bx register.

Base Register.

A base (Bx) register is a data address generator (DAG) register that sets up
the starting address for a circular buffer.

Bit-Reverse Addressing.

The data address generator (DAG) provides a bit-reversed address during
a data move without reversing the stored address.

Block Repeat.

See “Type 13: Do Until” on page 8-55.

Glossary

G-2 ADSP-2136x SHARC Processor Programming Reference

Block Size Register.

See length registers on page G-9.

Boot Modes.

The boot mode determines how the processor starts up (loads its initial
code). The ADSP-2136x processors can boot from its SPI port or through
its parallel port via an EPROM.

Broadcast Data Moves.

The data address generator (DAG) performs dual data moves to comple-
mentary registers in each processing element to support SIMD mode.

Buffered Serial Port.

See serial ports on page G-14.

Bus Slave or Slave Mode.

A processor can be a bus slave to another processor or to a host processor.
The processor becomes a host bus slave when the HBG signal is returned.

Cache Block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

Cache Hit.

A memory access that is satisfied by a valid, present entry in the cache.

Cache Line.

Same as cache block. In this document, cache line is used for cache block.

Cache Miss.

A memory access that does not match any valid entry in the cache.

ADSP-2136x SHARC Processor Programming Reference G-3

Glossary

Circular Buffer Addressing.

The DAG uses the Ix, Mx and Lx register settings to constrain addressing
to a range of addresses. This range contains data that the DAG steps
through repeatedly, “wrapping around” to repeat stepping through the
range of addresses in a circular pattern.

Companding (Compressing/Expanding).

This is the process of logarithmically encoding and decoding data to min-
imize the number of bits that must be sent.

Conditional Branches.

These are JUMP or CALL/return instructions whose execution is based on
testing an IF condition.

Core.

The core consists of these functional blocks: CPU, L1 memory, event con-
troller, core timer, and performance monitoring registers.

Data Address Generator (DAG).

The data address generators (DAGs) provide memory addresses when data
is transferred between memory and registers.

Data Register File.

This is the set of data registers that transfer data between the data buses
and the computation units. These registers also provide local storage for
operands and results.

Data Registers (Dreg).

These are registers in the PEx and PEy processing elements. These regis-
ters are hold operands for multiplier, ALU, or shifter operations and are
denoted as Rx when used for fixed point operations or Fx when used for
floating-point operations.

Glossary

G-4 ADSP-2136x SHARC Processor Programming Reference

Deadlock Resolution.

When both the processor subsystem and the system try to access each
other’s bus in the same cycle, a deadlock may occur in which neither
access can complete. Techniques for resolving deadlock vary with the
interface: DRAM, host, or multiprocessor device.

Delayed Branches.

These are JUMPS and CALL instructions with the delayed branches (DB)
modifier. In delayed branches, no instruction cycles are lost in the pipe-
line, because the processor executes the two instructions after the branch
while the pipeline fills with instructions from the new branch.

Denormal Operands.

When the biased exponent is zero, smaller numbers can only be repre-
sented by making the integer bit (and perhaps other leading bits) of the
significant zero. The numbers in this range are called denormalized (or
tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbers to be represented.

Direct Branches.

These are JUMP or CALL instructions that use an absolute—not changing at
runtime—address (such as a program label) or use a PC-relative address.

Direct Reads and Writes.

A direct access of the processor’s internal memory or I/O processor regis-
ters by another processor or by a host processor.

DMA (Direct Memory Accessing).

The processor’s I/O processor supports DMA of data between processor
memory and external memory, host, or peripherals through the external,
link, and serial ports. Each DMA operation transfers an entire block of
data.

ADSP-2136x SHARC Processor Programming Reference G-5

Glossary

DMA Chaining.

The processor supports chaining together multiple DMA sequences. In
chained DMA, the I/O processor loads the next transfer control block
(DMA parameters) into the DMA parameter registers when the current
DMA finishes and auto-initializes the next DMA sequence.

DMA Parameter Registers.

These registers function similarly to data address generator registers, set-
ting up a memory access process. These registers include internal index
registers (IISPX, IISPI), internal modify registers (IMSPI), count registers
(CSPx, CSPI), chain pointer registers (CPSPI), external index registers
(EIPP), external modify registers (EMPP), and external count registers
(ECPP).

DMA TCB Chain Loading.

This is the process that the I/O processor uses for loading the TCB of the
next DMA sequence into the parameter registers during chained DMA.

Edge-Sensitive Interrupt.

The processor detects this type of interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of CLKIN.

Endian Format, Little Versus Big.

The processor uses big-endian format—moves data starting with most-sig-
nificant-bit and finishing with least-significant-bit—in almost all
instances. The two exceptions are bit order for data transfer through the
serial port and word order for packing through the parallel port. For com-
patibility with little-endian (least-significant-first) peripherals, the
processor supports both big- and little-endian bit order data transfers.
Also for compatibility little endian hosts, the processor supports both big
and little endian word order data transfers.

Glossary

G-6 ADSP-2136x SHARC Processor Programming Reference

EPROM (Erasable Programmable Read-Only Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in isolated (“floating”) transistor gates that retain their charges
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates—a process that
requires relatively high voltage (usually 12V – 25V). Ultraviolet light,
applied to the chip’s surface through a quartz window in the package, dis-
charges the floating gates, allowing the chip to be reprogrammed.

Explicit Versus Implicit Operations.

In SIMD mode, identical instructions execute on the PEx and PEy com-
putational units; the difference is the data. The data registers for PEy
operations are identified (implicitly) from the PEx registers in the instruc-
tion. This implicit relation between PEx and PEy data registers
corresponds to complementary register pairs.

Field Deposit (Fdep) Instructions.

These shifter instructions take a group of bits from the input register
(starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register.

Field Extract (Fext) Instructions.

These shifter extract a group of bits as directed from anywhere within the
input register and place them in the result register (aligned with the LSB
of the 32-bit integer field).

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in.

ADSP-2136x SHARC Processor Programming Reference G-7

Glossary

Flag Pins (Programmable).

These pins (FLGx) can be programmed as input or output pins using bit
settings in the MODE2 register. The status of the flag pins is given in the
FLAGS or IOFLAG register.

Flag Update.

The processor’s update to status flags occurs at the end of the cycle in
which the status is generated and is available on the next cycle.

General-Purpose Input/Output Pins.

See programmable flag pins.

Harvard Architecture.

Processor’s use memory architectures that have separate buses for program
and data storage. The two buses let the processor get a data word and an
instruction simultaneously.

Hold Time Cycle.

This is an inactive bus cycle that the processor automatically generates at
the end of a read or write (depending on the parallel port access mode) to
allow a longer hold time for address and data. The address—and data, if a
write—remains unchanged and is driven for one cycle after the read or
write strobes are deasserted.

I/O Processor Register.

One of the control, status, or data buffer registers of the processor's
on-chip I/O processor.

Glossary

G-8 ADSP-2136x SHARC Processor Programming Reference

Idle Cycle.

This is an inactive bus cycle that the processor automatically generates
(depending on the parallel port access mode) to avoid data bus driver con-
flicts. Such a conflict can occur when a device with a long output disable
time continues to drive after RD is deasserted while another device begins
driving on the following cycle.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

Index Registers.

An index register is a data address generator (DAG) register that holds an
address and acts as a pointer to memory.

Indirect Branches.

These are JUMP or CALL instructions that use a dynamic—changes at runt-
ime—address that comes from the PM data address generator.

Inexact Flags.

An exception flag whose bit position is inexact.

Input Clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication via the phase locked loop (PLL) module.

ADSP-2136x SHARC Processor Programming Reference G-9

Glossary

Interleaved Data.

To take advantage of the processor’s data accesses to 4- and 3-column
locations, programs must adjust the interleaving of data into (not neces-
sarily sequential) memory locations to accommodate the memory access
mode.

Internal Memory Space.

This space ranges from address 0x0000 0000 through 0x0005 3FFF (nor-
mal word). Internal memory space refers to the processor’s on-chip SRAM
and memory-mapped registers.

Interrupts.

Subroutines in which a runtime event (not an instruction) triggers the exe-
cution of the routine.

JTAG Port.

This port supports the IEEE standard 1149.1 Joint Test Action Group
(JTAG) standard for system test. This standard defines a method for seri-
ally scanning the I/O status of each component in a system.

Jumps.

Program flow transfers permanently to another part of program memory.

Latency.

The overhead time used to find the correct place for memory access and
preparing to access it.

Length Registers.

A length register is a data address generator (DAG) register that sets up the
range of addresses a circular buffer.

Glossary

G-10 ADSP-2136x SHARC Processor Programming Reference

Level-Sensitive Interrupts.

The processor detects this type of interrupt if the signal input is low
(active) when sampled on the rising edge of CLKIN.

Loops.

One sequence of instructions executes several times with zero overhead.

McBSP, Multichannel Buffered Serial Port.

See serial ports.

MCM, Multichannel Mode.

See Multichannel mode on page G-11.

Memory Access Modes.

The processor supports asynchronous external memory space. In asyn-
chronous access mode, the processor’s RD and WR strobes change before
CLKIN edge. In synchronous access mode, the processor’s RD and WR strobes
change on CLKIN edge.

Memory Blocks and Banks.

The processor’s internal memory is divided into blocks that are each asso-
ciated with different data address generators. The processor’s external
memory spaces is divided into banks, which may be addressed by either
data address generator.

Modified Addressing.

The DAG generates an address that is incremented by a value or a register.

Modify Address.

The data address generator (DAG) increments the stored address without
performing a data move.

ADSP-2136x SHARC Processor Programming Reference G-11

Glossary

Modify Registers.

A modify register is a data address generator (DAG) register that provides
the increment or step size by which an index register is pre- or post-modi-
fied during a register move.

Multichannel Mode.

In this mode, each data word of the serial bit stream occupies a separate
channel.

Multifunction Computations.

Using the many parallel data paths within its computational units, the
processor supports parallel execution of multiple computational instruc-
tions. These instructions complete in a single cycle, and they combine
parallel operation of the multiplier and the ALU or dual ALU functions.
The multiple operations perform the same as if they were in correspond-
ing single-function computations.

Multiplier.

This part of a processing element does floating-point and fixed-point mul-
tiplication and executes fixed-point multiply/add and multiply/subtract
operations.

Nonzero numbers.

Nonzero, finite numbers are divided into two classes: normalized and
denormalized.

Neighbor Registers.

In long word addressed accesses, the processor moves data to or from two
neighboring data registers. The least-significant-32 bits moves to or from
the explicit (named) register in the neighbor register pair. In forced long
word accesses (normal word address with LW mnemonic), the processor

Glossary

G-12 ADSP-2136x SHARC Processor Programming Reference

converts the normal word address to long word, placing the even normal
word location in the explicit register and the odd normal word location in
the other register in the neighbor pair.

Parallel Port.

This port extends the processor’s internal address and data buses off-chip,
providing the processor’s interface to off-chip memory devices.

PAGEN, Program Address Generation Logic.

For more information, see “Program Sequencer” on page 3-1.

Peripherals.

This refers to everything outside the processor core. The ADSP-2136x
processor’s peripherals include internal memory, parallel port, I/O proces-
sor, JTAG port, and any external devices that connect to the processor.
Detail information about the peripherals is found in the ADSP-2136x
SHARC Processor Hardware Reference for the ADSP-21362/3/4/5/6 Proces-
sors and the ADSP-2136x SHARC Processor Hardware Reference for the
ADSP-21367/8/9 Processors.

Phase Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full speed master clock
from a lower frequency input clock signal.

Post-Modify Addressing.

The data address generator (DAG) provides an address during a data move
and auto-increments the stored address for the next move.

Precision.

The precision of a floating-point number depends on the number of bits
after the binary point in the storage format for the number. The processor
supports two high precision floating-point formats: 32-bit IEEE sin-

ADSP-2136x SHARC Processor Programming Reference G-13

Glossary

gle-precision floating-point (which uses 8 bits for the exponent and 24
bits for the mantissa) and a 40-bit extended precision version of the IEEE
format.

Pre-Modify Addressing.

The data address generator (DAG) provides a modified address during a
data move without incrementing the stored address.

Pulse Width Modulation.

A technique for controlling analog circuits with a microprocessor’s digital
outputs.

Registers Swaps.

This special type of register-to-register move instruction uses the special
swap operator, <->. A register-to-register swap occurs when registers in
different processing elements exchange values.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

Saturation (ALU Saturation Mode).

In this mode, all positive fixed-point overflows return the maximum posi-
tive fixed-point number (0x7FFF FFFF), and all negative overflows return
the maximum negative number (0x8000 0000).

Semaphore.

This is a flag that can be read and written by any of the processors sharing
the resource. Semaphores can be used in multiprocessor systems to allow
the processors to share resources such as memory or I/O. The value of the
semaphore tells the processor when it can access the resource. Semaphores
are also useful for synchronizing the tasks being performed by different
processors in a multiprocessing system.

Glossary

G-14 ADSP-2136x SHARC Processor Programming Reference

Serial Peripheral Interface (SPI).

A synchronous serial protocol used to connect integrated circuits.

Serial Ports (SPORTS).

The processor has six synchronous serial ports that provide an inexpensive
interface to a wide variety of digital and mixed-signal peripheral devices.

SHARC.

This is an acronym for Super Harvard Architecture. This processor archi-
tecture balances a high performance processor core with high performance
buses (PM, DM, I/O).

Shifter.

This part of a processing element completes logical shifts, arithmetic
shifts, bit manipulation, field deposit, and field extraction operations on
32-bit operands. Also, the shifter can derive exponents.

SIMD (Single-Instruction, Multiple-Data).

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction.

SMUL, Saturation on Multiplication.

See multiplier on page G-11.

S/PDIF.

Sony/Philips Digital InterFace. A serial interface for transferring digital
audio between devices such as CD and DVD players and amplifiers.
S/PDIF is the consumer version of the AES/EBU interface and uses unbal-
anced 75 ohm coaxial cable with RCA or BNC connectors.

SP (Stack Pointer).

A register that points to the top of the stack.

ADSP-2136x SHARC Processor Programming Reference G-15

Glossary

SST, Saturation On Store.

See multiplier on page G-11.

Stack.

A data structure for storing items that are to be accessed in last in, first out
(LIFO) order. When a data item is added to the stack, it is “pushed”;
when a data item is removed from the stack, it is “popped.”

Subroutines.

The processor temporarily interrupts sequential flow to execute instruc-
tions from another part of program memory.

System Clock (SCLK).

A component that delivers clock pulses at a frequency determined by a
programmable divider ratio within the PLL.

TADD, TDM Address.

See Multichannel Mode on page G-11.

TCB Chain Loading.

The process in which the processor’s DMA controller downloads a Trans-
fer control block from memory and autoinitializes the DMA parameter
registers.

Time Division Multiplexed (TDM) Mode.

The serial ports support TDM or multichannel operations. In multichan-
nel mode, each data word of the serial bit stream occupies a separate
channel— each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of 24
channels.

Glossary

G-16 ADSP-2136x SHARC Processor Programming Reference

Transfer Control Block (TCB).

A set of DMA parameter register values stored in memory that are down-
loaded by the processor’s DMA controller for chained DMA operations.

Three-State Versus Tristate.

Analog Devices documentation uses the term “three-state” instead of
“tristate” because Tristate™ is a trademarked term, which is owned by
National Semiconductor.

Universal Registers (Ureg).

These are any processing element registers (data registers), any data
address generator (DAG) registers, any program sequencer registers, and
any I/O processor registers.

Von Neumann Architecture.

This is the architecture used by most (non-processor) microprocessors.
This architecture uses a single address and data bus for memory access.

Wait States.

The time spent waiting for an operation to take place. It may refer to a
variable length of time a program has to wait before it can be processed, or
to a fixed duration of time, such as a machine cycle. When memory is too
slow to respond to the CPU’s request for it, wait states are introduced
until the memory can catch up.

Write-1-to-Clear (W1C) Bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

ADSP-2136x SHARC Processor Programming Reference I-1

I INDEX

Numerics
16-bit floating-point data, 9-89, 9-90
16-bit floating-point format, 2-6
32-bit

data normal word, 5-35
fixed-point format, 2-8
modifier, 4-12
single-precision floating-point format,

2-4
40-bit

addressable memory, 5-7, 5-13, 5-27
alternate registers, 2-49
DAG register-to-register transfers, 4-22
data transfers, 2-38
extended-precision floating-point

format, 2-5, 2-13
floating-point operands, 2-22
register move, 3-67
register swaps, 2-51
register-to-register transfers, 5-7

48-bit, 5-21
access, 5-2
and PM data bus use, 5-7
data transfers (PX register), 5-9, 5-10
instructions, 5-15
word width, 5-20
wrapping, 5-13

64-bit
access key, in JTAG port, 1-15
ALU product (multiplier), 2-8
data passing, 1-11
DM and PM bus transfers, 4-21

64-bit (continued)
JTAG port access key, 1-15
memory accesses, 1-13
PX register, 5-7
signed fixed-point product, 2-8
unsigned fixed-point product, 2-11
unsigned integer, 2-8
word addressing, 5-7

A
about this document, xxiv
ABS (absolute value) computation, 9-18,

9-29, 9-30, 9-34
absolute address, 3-28, A-13, G-4
AC (ALU fixed-point carry) bit, 2-18, 3-41,

B-14
access between DM or PM and a universal

register, 8-8, 8-59, 8-62
access between DM or PM and the register

file, 8-13
accessing memory, 5-2, 5-15, 5-31 to 5-37
ADD instruction, 2-43
addition

computation, 9-6
with borrow computation, 9-14
with carry computation, 9-8, 9-13
with division computation, 9-10

address
calculating, 5-25
fields, B-30
memory, 5-12

Index

I-2 ADSP-2136x SHARC Processor Programming Reference

address (continued)
stage, 3-3

addressing
and address ranges, 5-13
even short words, 5-39
gaps in, 5-13
long word (LW mnemonic), 5-13, 5-16
memory, 5-7
odd short words, 5-39
post-modify, pre-modify, modify,

bit-reverse, or circular buffer, 4-1
short versus long word, 5-13
short word, 5-15
storing top-of-loop addresses, 3-35, B-30
with DAGs, 4-11

AF (ALU floating point operation) bit,
2-18, B-16

AI (ALU floating-point invalid operation)
bit, 2-18, B-15

AIS (ALU floating-point invalid) bit, 2-19,
B-20

Ai values and MR registers, 9-60
aligning data, 5-20
alternate DAG registers, 4-6
alternate registers, 1-9

See also secondary registers
ALU, 1-6, 2-1, 2-16

ALUSAT (ALU saturation) bit, 2-11,
2-17

carry (AC) bit, 2-18, 3-41, A-16, B-14
fixed-point overflow (AOS) bit, 2-19,

B-20
floating-point operation (AF) bit, 2-18,

B-16
floating-point underflow (AUS) bit, 2-18
instructions, 2-17, 2-19
interrupts, 3-77
operations, 2-17, 9-3
overflow (AV) bit, 2-18, A-16
result negative (AN) bit, 2-18

ALU (continued)
result zero (AZ) bit, 2-18, B-14
saturation, 2-18, 9-6 to 9-9, 9-13 to

9-18, 9-40
saturation (ALUSAT) bit, B-6
status, 2-11, 2-15, 2-17, 2-18, 2-19,

2-27, 3-77
x-input sign (AS) bit, 2-18, B-14

AN (ALU result negative) bit, 2-18, B-14
AN (ALU result negative) flag, 9-11, 9-32
AND, logical, 2-20, 3-60, 3-61, 6-11, 8-16,

8-32, 8-38, 8-50
AND breakpoints (ANDBKP) bit, 6-10
AND (logical) computation, 9-20
AOS (ALU fixed-point overflow) bit, 2-19,

B-20
arithmetic

exception and interrupts, 3-69, 3-73
loops, 3-39, 3-53
operations, 2-16, 2-17
shift, 9-66, 9-67
shifts, G-14
status flags, 3-24
status registers in conditional sequencing,

3-40
AS (ALU x-input sign) bit, 2-18, B-14
ASHIFT computation, 9-66, 9-67
ASTATx/y (arithmetic status) registers,

2-15, 2-18, 2-26, 2-27, 3-17, 3-25,
3-26, 9-8, 9-11

asymmetric data moves, 2-46
asynchronous

access mode, G-10
clock (external TCK), 6-2
interrupts external, 3-75
memory access (defined), G-10
transfers, G-1

AUS (ALU floating-point underflow) bit,
2-18, B-20

AV (ALU overflow) bit, 2-18, 3-41, B-14

ADSP-2136x SHARC Processor Programming Reference I-3

Index

average instructions, 2-43
AVS (ALU floating-point overflow) bit,

2-18, B-20
AZ (ALU result zero or floating-point

underflow) bit, 2-18, B-14
AZ flag, 9-11, 9-32

B
background registers, 1-9

See also secondary registers
background telemetry, 6-3
background telemetry channel (BTC), 6-4
barrel shifter, 2-30
base (Bx) registers, 4-2, 4-4, 4-18, B-34,

G-1
BCLR computation, 9-69
BDCSTx (broadcast load) bits, 4-2, 4-5,

5-28
BHO (buffer hang override) bit, 6-10
bit manipulation, 2-30, 3-85, 8-72, G-14
bit-reverse address enable (BRx) bits, 4-4,

4-8
bit-reverse addressing, G-1
bit-reverse (BITREV) instruction, 4-9,

4-20, 4-26, 8-75
bits

ALU carry (AC), 2-18
ALU fixed-point overflow (AOS), 2-19
ALU floating-point overflow (AVS),

2-18
ALU floating-point underflow (AUS),

2-18
ALU result negative (AN), 2-18
ALU result zero (AZ), 2-18
ALU x-input sign (AS), 2-18
AV (ALU overflow), 2-18
BHO (buffer hang override), 6-10
bit clear operation, 2-30
bit-reverse address enable (BRx), 4-4,

4-8, B-5

bits (continued)
bit test flag (BTF), 3-40
broadcast loading (BDCSTx), 4-2, 4-5,

5-28
bus master select (CSEL), B-9
cache disable (CADIS), 3-8, B-11
cache freeze (CAFRZ), 3-8, B-11
circular buffer enable (CBUFEN), 4-2,

4-4, 4-16
circular buffer x overflow (CBxS), B-20
compare accumulation (CCAC), 2-18
illegal input condition detected (IICD),

5-29
illegal I/O processor register access enable

(IIRAE), 5-29
internal memory data width (IMDWx),

5-15
least recently used (LRU), 3-10
nesting multiple interrupt enable

(NESTM), 3-79, B-6
overwriting, 5-15
PC stack full (PCFL), 3-36, B-21
processing element Y enable (PEYEN),

2-11
round floating-point to 32 bits

(RND32), 2-11
rounding (TRUNC), 2-11
shifter input sign (SS), 2-8
shifter overflow (SV), 2-8
shifter zero (SZ), 2-8
short (16-bit data) sign extend (SSE) bit,

5-35
sign extend short word (SSE), 2-11
timer expired high priority (TMZHI),

7-5
timer expired low priority (TMZLI), 7-5
unaligned 64-bit memory access

(U64MA), 5-30, 5-37, B-11, B-21
user mode breakpoint (UMODE), 6-11

bit test (BTST) instruction, 2-16, 5-31

Index

I-4 ADSP-2136x SHARC Processor Programming Reference

bit test flag (BTF) bit, 3-40, 8-72, B-17
bit XOR instruction, 3-40
block conflicts, 3-7
blocks of memory, 5-2
boolean operator

AND, 2-20, 3-60, 3-61, 6-11, 8-16,
8-32, 8-38, 8-50

OR, 8-28, 9-3, 9-21, 9-63, 9-67, 9-75,
9-86

booting from an external device, 5-26
boot memory, reading from, 5-26
boundary scan, 6-1, 6-2, 6-17
boundary-scan register, 6-15
branch

conditional, 3-28, 3-61
delayed, 3-29, 3-32
direct, 3-28, G-4
indirect, 3-28
stalls in, 3-16

branching execution, 3-26
direct and indirect branches, 3-28

breakpoint
BRKCTL (breakpoint control) register,

6-11
output (BRKOUT) pin, 6-8
stop (BKSTOP) bit, 6-8
triggering mode (xMODE) bit, 6-10

BRKCTL (breakpoint control) register,
6-11

broadcast load, 4-1, 4-2, 4-3, 4-5, 5-29,
5-37, B-7, G-2

enable (BDCSTx) bits, B-7
broadcast loading, 5-72
broadcast load mode, 5-37
broadcast register loads (BDCSTx) register,

5-36
BRx (bit reverse) bits, 4-4, 4-8
BSDL (boundry scan description language)

file, 6-2
BSET computation, 9-70

BTC background telemetry channel, 6-4
BTF (bit test flag) bit, 3-40, B-17
BTGL computation, 9-71
BTST (bit test) instruction, 2-16
BTST computation, 9-72
buffer, circular, 4-1, 4-14
buffer overflow, circular, 4-10, 4-14, 4-17
buses

addressing operations, 5-5
bus and block conflicts, 3-5
bus exchange (PX) registers, 5-8
bus exchange register, 5-7
bus master select (CSEL) bits, B-6, B-9
bus slave defined, G-2
conflicts, 3-74
data access types, 5-32
master, B-6
overview, 1-3, 1-10
structure, 5-5

bus exchange, A-10
bus master (Bm) condition, A-17
Bx (base) registers, 4-2, 4-18, B-34, G-1
BYPASS instruction, 6-6

C
CACCx (compare accumulation) bits,

2-18, B-17
cache

cache disable (CADIS) bit, B-11
cache freeze (CAFRZ) bit, B-11
code examples, 3-10
disable (CADIS) bit, 3-8
efficient use of, 3-9
flush, 8-79
freeze (CAFRZ) bit, 3-8
hit, 3-6, 3-9
instruction cache, 3-8
miss, 3-6, 3-9
restrictions on use, 3-9
using, 3-8

ADSP-2136x SHARC Processor Programming Reference I-5

Index

CADIS (cache disable) bit, 3-8, B-11
CAFRZ (cache freeze) bit, 3-8, B-11
calculating starting address (32-bit

addresses), 5-25
CALL instructions, 3-26
CBUFEN (circular buffer enable) bit, 4-2,

4-4, 4-16
CBxS (circular buffer x overflow) bit, B-20
circular buffer addressing, 1-8, 4-2, 4-4,

4-14, B-7, B-9, G-3
registers, 4-17
setup, 4-14
SIMD and long word accesses, 4-19
wrap around, 4-17

circular buffer addressing enable
(CBUFEN) bit, 4-2, 4-4, 4-16, B-7

circular buffering, length and base registers,
B-34

circular buffering enable (CBUFEN) bit,
8-27, 8-75

circular buffer wrap, 4-17
Cjump/Rframe (Type 24), A-8
Cjump/Rframe (Type 24) instruction,

8-82
clear, bit, 2-30
CLIP computation, 9-26, 9-50
clock input (CLKIN) pin, 6-2
clocks and system clocking

CLKIN pin, 6-2
clock cycles and program flow, 3-3
external clock (TCK), 6-2

companding (compressing/expanding),
G-3

compare accumulation (CACC) bits, 2-18
COMP computation, 9-11, 9-32
complementary conditions, 3-61
complementary registers, 2-47, A-23, G-6
complement (Fn = –Fx) computation, 9-33
complement (Rn = –Rx) computation,

9-17

COMPU computation, 9-12
computation

ABS, 9-18, 9-29, 9-30, 9-34
addition, 9-6, 9-27
addition/division ((Rx + Ry)/2), 9-10
addition with borrow, 9-14
addition with carry, 9-8, 9-13
AND (logical), 9-20
ASHIFT, 9-66, 9-67
BCLR, 9-69
BSET, 9-70
BTGL, 9-71
BTST, 9-72
CLIP, 9-26, 9-50
COMP, 9-11, 9-32
complement (Fn = –Fx), 9-33
complement (Rn = –Rx), 9-17
COMPU, 9-12
COPYSIGN, 9-47
decrement (Rn = Rx – 1), 9-16
division (Fx + Fy)/2, 9-31
EXP, 9-85, 9-86
FDEP, 9-73, 9-75, 9-77, 9-79
FEXT, 9-81, 9-83
FIX, 9-40
FLOAT, 9-42
FPACK, 9-89
FUNPACK, 9-90
increment, 9-15
LEFTO, 9-88
LEFTZ, 9-87
LOGB, 9-39
LSHIFT, 9-64, 9-65
MANT, 9-38
MAX, 9-25, 9-49
MIN, 9-24, 9-48
multiplication, 9-54, 9-62
multiplication/addition (Rn = MRF + Rx

* Ry mod2), 9-55

Index

I-6 ADSP-2136x SHARC Processor Programming Reference

computation (continued)
multiplication/subtraction (Rn = MRF –

Rx * Ry mod2), 9-56
NOT, 9-23
OR (logical), 9-21
PASS, 9-19, 9-35
RECIPS, 9-43
RND, 9-36, 9-58
ROT, 9-68
RSQRTS, 9-45
SAT, 9-57
SCALB, 9-37
subtraction, 9-7
subtraction (Fn = Fx – Fy), 9-28
subtraction with borrow, 9-9
transfer (MR = RN/Rn = MR), 9-60
TRUNC, 9-40
XOR (logical), 9-22
zero (MRF = 0), 9-59

computational mode
setting, 2-48
status, using, 2-15
units (processing elements), 1-7

computational mode, setting, 2-11
computations

dual add/subtract, 2-41
compute

field, 9-2
operations, 9-1

compute and move/modify summary, A-2
compute/dreg«···»DM|PM, immediate

modify (Type 4), 8-13, A-3
compute/dreg«···»DM/dreg«···»PM (Type

1), 8-3
compute/dreg«···»DM/dreg«···»PM

(Type 1), A-2
compute/modify (Type 7), 8-27, A-3

compute (Type 2), 8-6, A-2
compute/ureg«···»DM|PM, register modify

(Type 3), 8-8, A-2
compute/ureg«···»ureg (Type 5), 8-18, A-3
conditional

branches, 3-28, 3-61, G-3
call, 8-31, 8-35
complementary conditions, 3-61
compute operations, 3-61
conditions list, 3-41, A-16
execution summary, 3-60
instructions, 3-40, 3-83, 8-6
instruction stalls, 3-18
jump, 8-31, 8-35, 8-42
SIMD mode and conditionals, 3-58

conditional loop (DO), 8-55
condition and termination codes (IF and

DO UNTIL), A-16
condition codes, 3-41, A-16
conflicts

block, 3-5
bus, 3-5, 3-74
memory, 5-3

context switch, 1-9, 2-39
conventions, manual, -xxxiv
converting numbers, 2-13
COPYSIGN computation, 9-47
core stalls, 3-11 to 3-26
counter-based loops, 3-47

See also non counter-based loops
CSEL bit, B-9
CURLCNTR (current loop counter)

register, 3-57, B-32
current loop counter (CURLCNTR)

register, 2-1, 3-57, 8-53, B-32
customer support, xxvi
cycle counting, 6-3

ADSP-2136x SHARC Processor Programming Reference I-7

Index

D
DADDR (decode address) register, 3-2,

B-32
DAGs, 4-1, A-10

addressing with, 4-11
broadcast register loads and, 5-28
data alignment, 4-21
data move restrictions, 4-23
data moves, 4-20
defined, G-3
enhancements, 1-16
instructions, 4-24
internal address and data buses, 5-5
operations, 4-10
overview, 1-8
register descriptions, B-34
registers, 4-1, 8-75, A-13, B-34
setting modes, 4-2
SIMD mode, 4-20
stalls in, 4-12
status, 4-9

data
addressing mode, 2-48
alignment, 5-20
alignment, normal word, 5-33
alignment in busses, 5-7
alignment in memory, 5-20
(Dreg) registers, G-3
flow paths, 2-1
formats, rounding, 2-2
fractional, 2-14
numeric formats, 2-2
packing and unpacking, 2-6
type, 5-32

data, fixed- and floating-point, G-1
data access

dual-data accesses, 5-4
options, 5-38
restrictions, dual-data access, 5-4
settings, 5-35

data address generator, See DAGs
data file registers, listed, B-22
data format

extended precision normal word, 40-bit
floating-point, 2-13

normal word, 32-bit fixed-point, 2-14
normal word, 32-bit floating-point, 2-12
short word, 16-bit floating-point, 2-13

data moves, 1-10
conditional, 3-61
moves to/from PX, 5-10

data register file, 8-1, 8-30, 9-91, A-9
data registers, 1-6, 2-37, 2-48, G-3
data registers, secondary hi/lo (SRRFH/L)

bits, 2-40
data transfers

bidirectional, 2-49
unidirectional, 2-49

deadlock resolution, G-4
decode address (DADDR) register, 3-2,

B-32
decode stage, 3-3
decrement (Rn = Rx – 1) computation,

9-16
delayed branch

(DB) instruction, 3-29, 3-32
(DB) jump or call instruction, 3-31, G-4
limitations, 3-32

delayed branch (DB), 8-31, 8-35, 8-49
delayed interrupt processing, causes, 3-73
denormal operands, 2-12, G-4
deposit bit field, 2-30
development tools, 1-15
device identification register, 6-5
direct addressing, 8-59, A-13
direct jump|call (type 8), 8-31, A-4
DIVEN (PLL divider enable) bit, B-39,

B-40
division (Fx + Fy)/2 computation, 9-31

Index

I-8 ADSP-2136x SHARC Processor Programming Reference

DMA
defined, G-4
parameter registers, defined, G-5
sequences, TCB loading, G-5

DMx register, 6-12, 6-14, 6-15
double register operations

unsupported, 2-51
DO UNTIL

counter expired (type 12), 8-53, A-5
instruction, 3-39
loops, 3-39
(type 13), 8-55, A-5

DO UNTIL instruction, 3-39
DSP

product information, xxviii
dual add/subtract, 2-41, 2-43
dual-data accesses, 5-4, 5-37
dual processing element moves (broadcast

load mode), 5-72

E
edge-sensitive interrupts, 3-75, B-11, G-5
EEMUIN buffer, 6-4
EEMUOUT FIFO buffer, 6-4
EEMUSTAT register, 6-4, 6-13
effect latency, 3-23
E field, address, B-30
EMUCLKx register, 6-4, 6-15
emulator

background telemetry channel (BTC),
6-4

boundry scan system, 6-2
clock (EMUCLKx) register, 6-15
clock register, 6-4
enable (EMUENA) bit, 6-8
idle (EMUIDLE) instruction, 6-15
interrupt enable (EIRQENA) bit, 6-8

emulator registers

clock (EMUCLKx), 6-15
control shift (EMUCTL), 6-8

emulator registers (continued)
EEMUSTAT (emulator status), 6-4,

6-13
EMUCLKx (emulator clock), 6-4, 6-15
EMUPID (revision ID), 6-5
event counter (EMUN), 6-4, 6-15
Nth event counter (EMUN), 6-4, 6-15

EMUN (event counter) register, 6-15
enable

breakpoint (ENBx) bit, 6-9
(BRKOUT) pin, 6-8
circular buffer, 4-14

endian format, G-5
end-of-loop instruction address, 3-43
EPAS (external port address start) register,

6-13
equals (EQ) condition, 3-41, A-16
examples

bit reverse addressing, 4-8
cache inefficient code, 3-10
direct branch, 3-28
DO UNTIL loop, 3-38
interrupt service routine, 3-81
long word moves, 5-33
PX register transfers, 5-7 to 5-10
single and dual data access, 5-38

execute stage, 3-3
EXP (exponent) computation, 9-85, 9-86
explicit operations

secondary processor element and, 5-28
explicit versus implicit operations, G-6
exponent

derivation, G-14
unsigned, 2-4

exponent extract, 2-30
EXT_CLK mode, B-37

ADSP-2136x SHARC Processor Programming Reference I-9

Index

extended precision normal word, 5-19,
5-34

data access, 5-56, 5-57
mixed data access, 5-34
SIMD mode access, 5-60
SISD mode access, 5-59

external event watchdog (EXT_CLK)
mode, 7-1, 7-14

external interrupts, 3-75
external memory, 1-17

access modes, G-10
external port stop (EPSTOP) bit, 6-9
EXTEST instruction, 6-6
extract

bit field, 2-30
exponent, 2-30

F
FADDR (fetch address) register, 3-2, B-31
false always (FOREVER) Do/Until

condition, 3-42, A-17
FDEP (field deposit) computation, 9-73,

9-75, 9-77, 9-79
fetch1 stage, 3-3
fetch2 stage, 3-3
fetch address (FADDR) register, 3-2, B-31
fetched address, 3-2
FEXT computation, 9-81, 9-83
field alignment, 9-73, 9-77, 9-81
field deposition/extraction, G-14
FIFO, shadow write, 5-19, 5-81
FIX computation, 9-40
fixed-point

ALU instructions, 2-20
ALU operations, 9-3
data, G-1
formats, 2-8
multiplier instructions, 2-28, 2-43
multiplier operations, 9-51
operands, 2-17, B-14

operations, 2-38
operations, ALU, 9-3
overflow interrupt (FIXI) bit, 3-77
product, 64-bit, 2-8
product, 64-bit unsigned, 2-11
saturation values, 2-25

flag
input (FLAGx_IN) conditions, 3-42,

A-17
input/output (FLAGx) pins, B-28
input/output value (FLAGS) register,

B-25
update, 2-19, 2-27, 2-34, 2-52, 3-77,

4-10, 5-31, G-7
use with NAN, 2-4

flag input (FLAGx_IN) conditions, A-17
FLAGS

FLAGx pins, B-28
FLAGS register, B-25

stalls in, 3-25
FLOAT computation, 9-42
floating-point

ALU instructions, 2-21
ALU operations, 9-4
data, 2-15, G-1
data format (RND32) bit, 2-11
invalid operation interrupt (FLTII) bit,

3-77
multiplier instructions, 2-29
multiplier operations, 9-51
operations, 2-38, 2-44
overflow interrupt (FLTOI) bit, 3-77
underflow interrupt (FLTUI) bit, 3-77,

B-14
formats

See also data format
16-bit floating-point, 2-6
40-bit floating-point, 2-5
64-bit fixed-point, 2-8
fixed-point, 2-8

Index

I-10 ADSP-2136x SHARC Processor Programming Reference

formats (continued)
numeric, 2-2
packing (Fpack/Funpack) instructions,

2-13
short word, 2-6

FPACK (floating-point pack)
computation, 9-89

FPACK/FUNPACK (floating-point
pack/unpack) instructions, 2-6

fractional
data, 2-14, 2-15
input(s), 2-29
results, 2-8, 2-23

FUNPACK (floating-point unpack)
computation, 9-90

G
global interrupt enable, B-6
greater or equals (GE) condition, 3-41,

A-16
greater than (GT) condition, 3-41, A-16

H
Harvard architecture, 5-3, G-7
hold time cycle, G-7

I
IDCODE instruction

unsupported, 6-6
identification, processor (PIDx) bit, B-42
IDLE cycle, G-8
IDLE instruction, 3-1, 3-82
IDLE instruction, defined, G-8
idle (type 22), 8-81, A-8
IEEE 1149.1 JTAG standard, 1-14, G-9
IEEE 754/854 floating-point data format,

2-12

IEEE floating-point number conversion,
2-13

IEEE standard 754/854, 2-2
IICD (illegal input condition interrupt) bit,

5-29, 5-30
IIRAE (illegal IOP register access enable)

bit, 5-29, 5-37, B-11
IIRAE (illegal IOP register access

enable) bit, B-11
IIRA (illegal IOP register access) bit, B-21
IIVT (internal interrupt vector table) bit,

5-36
illegal input condition detected (IICD) bit,

5-29, 5-30
illegal IOP register access (IIRA) bit, B-21
illegal I/O processor register access enable

(IIRAE) bit, 5-29, 5-37, B-11
IMASKP (interrupt mask pointer) register,

3-79, 8-48
IMDWx (internal memory data width)

bits, 5-9, 5-15, 5-27, 5-31, 5-36
immediate data···»DM|PM (Type 16),

8-66, A-6
immediate data···»ureg (Type 17)

instruction, 8-69, A-6
immediate move summary, A-5
immediate shift/dreg«···»DM|PM (Type 6)

instruction, 8-22, A-3
immediate shift instruction, 9-62
implicit operations, 5-29

broadcast load, 4-6
complementary registers, 2-47
long word (LW) accesses, 5-32
neighbor registers, 5-33
secondary processor element and, 5-28
SIMD mode, 2-47

increment (Rn = Rx + 1) computation,
9-15

index (Ix) registers, 4-2, 4-4, 4-11, 4-17,
B-34, G-8

ADSP-2136x SHARC Processor Programming Reference I-11

Index

indirect addressing, 1-8, 8-66, A-13
indirect branch, 3-28, G-8
indirect jump Call|Compute (Type 9)

instruction, 8-35, A-4
indirect jump or compute/dreg«···»DM

(Type 10), 8-42, A-5
INDIV (input divisor) bit, B-40
inexact flags, G-8
infinity, round-to, 2-12
instruction

ADD, 2-43
(bit), 3-85
BIT CLR, 2-30
(Type 10) indirect jump or

compute/dreg«···»DM, 8-42, A-5
(Type 11) return from

subroutine|interrupt/compute, 8-48,
A-5

(Type 12) do until counter expired, 8-53,
A-5

(Type 13) do until, 8-55, A-5
(Type 14) ureg«···»DM|PM (direct

addressing), 8-59, A-6
(Type 15) ureg«···»DM|PM (indirect

addressing), 8-62
(Type 15) ureg«···»DM|PM (indirect

addressing), A-6
(Type 16) immediate data···»DM|PM,

8-66, A-6
(Type 17) immediate data ···»ureg, 8-69,

A-6
(Type 18) system register bit

manipulation, 8-72, A-7
(Type 19) I register modify/bit-reverse,

8-75, A-7
(Type 1)

compute/dreg«···»DM/dreg«···»PM,
8-3, A-2

(Type 20) Push|Pop Stacks/Flush Cache,
8-78, A-7

instruction (continued)
(Type 21) Nop, 8-80, A-8
(Type 22) Idle, 8-81, A-8
(Type 24) Cjump/Rframe, 8-82, A-8
(Type 2) compute, 8-6, A-2
(Type 3) compute/ureg«···»DM|PM,

register modify, 8-8, A-2
(Type 4) compute/dreg«···»DM|PM,

immediate modify, 8-13, A-3
(Type 5) compute/ureg«···»ureg, 8-18,

A-3
(Type 6) immediate

shift/dreg«···»DM|PM, 8-22, A-3
(Type 7) compute/modify, 8-27, A-3
(Type 8) direct jump|call, 8-31, A-4
(Type 9) indirect jump|call / compute,

8-35, A-4
instruction cache, 1-8, 1-9, 3-8, 5-4, 8-78
instruction pipeline, 3-2

counter-based four instruction loops,
3-52

counter-based single instruction loops,
3-47 to 3-49

counter-based three instruction loops,
3-51

counter-based two instruction loops,
3-50 to 3-51

stages, 3-3
stalls, data and control, 3-14
stalls, structural, 3-12
stalls in, 3-11, 4-13

instruction register, 6-6
instructions

AVE, 2-43
BITREV (bit reverse), 4-9, 4-20, 4-26
bit XOR, 3-40
BYPASS, 6-6
CALL, 3-26
conditional, 2-15, 2-48, 2-50
conflicting, 3-13

Index

I-12 ADSP-2136x SHARC Processor Programming Reference

instruction (continued)
delayed branch (DB), 3-29, 3-32
delayed branch (DB) JUMP or CALL,

3-31, G-4
DO UNTIL, 3-39
dual data load, 4-5
FDEP (field deposit), 2-32
FPACK (floating-point pack), 2-6
FUNPACK (floating-point unpack), 2-6
Group I (Compute and Move), 8-1
Group III (Immediate Move), 8-57
Group IV (Miscellaneous), 8-71
INNER, 3-10
interpreting, 4-2
loop counter expired (LCE), 3-37
modify, 4-16, 4-19, 4-26
multiplier, 2-22, 2-27
OUTER, 3-10
syntax, 4-6

instruction set
changes, 1-18
enhancements, 1-18
notation, A-14

instruction word
data access, 5-34

integer
data, 2-14
input(s), 2-29
results, 2-8, 2-23

intended audience, xxiii
interleaved data, G-9
interleaving data, 5-38
internal buses, 1-10
internal interrupt vector table, See IIVT bit
internal interrupt vector table (IIVT) bit,

5-26
internal memory, 5-12, 5-81, G-9

data width (IMDWx) bits, 5-15, 5-27,
5-31

interrupting IDLE, 3-82

interrupt latency, 3-71
delayed branch, 3-73
single-cycle instruction, 3-71
writes to IRPTL, 3-71

interrupts, 1-9, 3-1, 5-29, 5-30, G-9
and floating-point exceptions, 2-15
and illegal memory access, 5-30
and sequencing, 3-69
arithmetic, 3-77
controller (control registers), 3-85
DAGs, 4-16
delayed, 3-73
enable, global (IRPTEN) bit, B-6
external, 3-75
handling overflow conditions, 4-9
hold off, 3-73
IDLE instructions, 3-82
inputs (IRQ2-0), 3-69
interrupt sensitivity, 3-74, B-11, G-10
interrupt service routine (ISR), 3-25,

3-70, 3-82
interrupt vector table, 3-69, 5-26
interrupt vector table (IVT), 3-69
interrupt x edge/level sensitivity (IRQxE)

bits, 3-75, B-11
IRPTL write timing, 3-71
latching, 3-76
latch (IRPTL) register, 3-27
latch/mask (LIRPTL) register, 3-76
latency, 3-71
mask (IMASK) register, 3-77
masking and latching, 3-76
nested interrupts, 3-79
nesting, B-6
nesting enable (NESTM) bit, 3-79
PC stack full, 3-36
processing, 3-70
response, 3-69
re-using, 3-81
sensitivity, interrupts, B-11

ADSP-2136x SHARC Processor Programming Reference I-13

Index

interrupts (continued)
software, 1-9, 3-71
timer, 7-5, 7-7

interval timer, 7-3
INTEST instruction, 6-6
I/O

and multiplier registers, A-9
stop (IOSTOP) bit, 6-8

IOP registers, A-12
I/O processor

registers, G-7
I register modify/bit-reverse (Type 19),

8-75, A-7
IRPTL (interrupt latch) register, 3-27
IRQ2-0 (interrupt request), 3-73
IRQxE (interrupt sensitivity) bits, 3-75,

B-11
ISR

interrupt service routine, 3-82
programming issues, 8-36, 8-48

IVT (interrupt vector table) bit, 5-26
Ix (index) registers, 4-2, 4-17, B-34, G-8

J
JTAG

background telemetry channel (BTC),
6-4

instruction register codes, 6-6
interface, access to features, 6-3
logic, 6-1
port, 1-14, 6-1, G-9
specification, IEEE 1149.1, 6-1, 6-2,

6-17
test access port (TAP), 6-1
test-emulation port, 6-1 to 6-17

JTAG ICE, 6-1
JTAG instruction

EMUPID, 6-5

JUMP instructions, 3-1, 3-26, G-9
clear interrupt (CI) register, 3-28
loop abort (LA) register, 3-28, 3-39
pops status stack with (CI), 3-79
stalls caused by, 3-18

L
LADDR (loop address) register, B-32
LA (loop abort instruction), 3-28, 3-39
latch

characteristics, 6-2
latching interrupts, 3-76
latency, 3-9, 3-71, 3-85

effect, 3-23
in FLAGS register, 3-25
read, 3-23
system registers, 3-85

latency, effect in MODE2 register, 3-9
LCE (loop counter expired condition),

3-20
LCNTR (loop counter) register, 3-57,

3-58, 8-53, 8-54, B-33
least recently used (LRU) bit, 3-10
least significant bits (LSB), 3-6
LEFTO computation, 9-88
LEFTO operation, B-16
LEFTZ computation, 9-87
LEFTZ (shifter) operation, B-16
length registers, 4-4
less or equals (LE) condition, 3-41, A-16
less than (LT) condition, 3-41, A-16
level sensitive interrupts, 3-74, B-11, G-10
link port, 1-18

enhancements, 1-18
LIRPTL (interrupt) registers, 3-76
LOGB (floating-point ALU) computation,

9-39
logical operations, 2-16
logical shifts, G-14

Index

I-14 ADSP-2136x SHARC Processor Programming Reference

long word, 5-34
data, 5-19
data access, 5-32, G-11
data moves, 5-33
SIMD mode, 5-66
single data, 5-62
SISD mode, 5-64

loop, G-10
address stack, 3-55, 3-85
address stack (LADDR) register, B-32
conditional loops, 3-38
counter expired (LCE) condition, 3-42,

A-17
counter expired (LCE) instruction, 3-37
counter register, defined, 3-37
counter setup, 8-53
counter stack, 3-56, 8-53
counter stack, access to, B-33
count (LCNTR) register, 3-57, 3-58,

B-33
current counter (CURLCNTR) register,

A-9
defined, 3-1
do/until instruction, 3-38
INNER instruction, 3-10
last iteration, 3-57
loop abort (LA) instruction, 8-31, 8-35
loop abort (LA) jump register, 3-28, 3-39
OUTER instruction, 3-10
reentry (LR) modifier, 8-49
restrictions, 3-43, 3-46
stack, 3-58, 3-60, 8-31, 8-35, 8-55, 8-79
stack empty (LSEM) bit, 3-57, B-21
stack overflow (LSOV) bit, 3-57, B-21
status, 3-56
termination, 3-39, 3-46, 3-56, 3-57,

3-83, A-16, B-32
termination mnemonics, 3-41

LSEM (loop stack empty) bit, 3-57, B-21

LSHIFT (logical shift) computation, 9-64,
9-65

LSOV (loop stack overflow) bit, 3-57, B-21
Lx (length) registers, 4-2, 4-18, B-34, G-9

M
mantissa, 9-38
MANT (mantissa) computation, 9-38
manual

audience, xxiii
contents, xxiv
conventions, xxxiv
new in this edition, xxvi
related documents, xxix

manual revisions, xxvi
map 1 and 2 registers, A-23, A-25, A-27
masking interrupts, 3-76
master, bus, B-6
MAX computation, 9-25, 9-49
memory, 1-2, G-9

32-bit data normal word, 5-35
accesses, 5-2
access priority, 5-3, 5-68
access rules, 5-4
access types, 5-28, 5-31, G-10
access word size, 5-32
addresses, 5-12
architecture, 5-3
asynchronous interface, G-10
banks of, G-10
blocks, 5-2, 5-27, G-10
booting, 5-26
broadcast loading, 5-28, 5-72
buses, 5-3, 5-5
bus structure, 5-5
columns of, 5-7, 5-13
conflicts in, 5-3
data alignment in busses, 5-7
data types, 5-32
data width (IMDWx) bits, 5-9

ADSP-2136x SHARC Processor Programming Reference I-15

Index

memory (continued)
DMA (external), 5-12
dual-data accesses, 5-4
enhancements, 1-17
fetching words from, 5-13
illegal access, 5-30
internal, 5-12
internal memory data width bit

(IMDWx), 5-15, 5-27
mixing 32-bit & 48-bit words, 5-21
mixing 32-bit and 48-bit words, 5-21
mixing 32-bit data and 48-bit

instructions, 5-20
mixing 40/48-bit and 16/32/64-bit data,

5-25
mixing instructions and data

two unused locations, 5-24, 5-25
mixing word width in SIMD mode, 5-70
mixing word width in SISD mode, 5-68
organization, 5-2, 5-7
overview, 5-1
program memory bus exchange (PX)

register, 5-7
RAM, 5-3
regions, 5-12 to 5-16
register-to-register moves, 5-7
ROM, 5-3
shadow write FIFO, 5-81
short (16-bit data) sign extend (SSE) bit,

5-35
short word data access, 5-35
space, 5-12
SRAM, 1-13
three column, 5-10
transition from 32-bit/48-bit data, 5-24
wrapping, 5-13
writes, 5-81

memory addressing summary, A-13
memory-mapped registers, B-43
memory select (MSx) pins, 5-18

memory test (MTST) bit, 6-10
memory transfers, 5-8

16-bit (short word), 5-39
32-bit (normal word), 5-48
40-bit (extended precision normal word),

5-56
64-bit (long word), 5-62
bus exchange (PX) registers, 5-8

M field, address, B-30
MI (multiplier floating-point invalid) bit,

2-26, B-16
MIN (minimum) computation, 9-24, 9-48
miscellaneous instructions summary, A-7
MIS (multiplier floating-point invalid) bit,

2-26, B-20
MMASK (mode mask) register, 3-78, 4-16,

B-7
mnemonics, 1-18

See also instructions
evaluation of, 3-40

MN (multiplier negative) bit, 2-26, B-15
mode 1 and 2 options and opcodes, 9-52,

9-53
MODE1 register, 2-11, 2-14
MODE2 register, 3-8
MODE2_SHDW register, B-42
mode control 2 shadow

(MODE2_SHDW) register, B-42
mode control (MODEx) registers, B-3
mode mask (MMASK) register, 3-78, 4-16,

B-7
modes, timer, B-35
MODEx registers, B-3
modified addressing, 4-11, G-10
modify

address, G-10
immediate value, 4-12
instruction, 4-16, 4-19, 4-26
register, 4-4, 4-11

modify address, 4-1

Index

I-16 ADSP-2136x SHARC Processor Programming Reference

modify instruction, 4-26
modify (Mx) registers, 4-2, 4-18, B-34,

G-11
modify/update an I register with a DAG,

8-27, 8-75
modulo addressing, 1-8
MOS (multiplier fixed-point overflow) bit,

2-26, B-20
MRF/MRB (multiplier

foreground/background) registers,
2-40

MRF (multiplier foreground) registers,
2-43

MRF(multiplier foreground) registers,
2-44, 8-7

MR (multiplier result) registers, 8-1, 8-30
MR (multiplier result) register transfers,

9-1
MS (multiplier sign) bit, 3-41
multichannel mode, G-15
multifunction, multiplier and ALU, 9-95
multifunction, multiplier and dual add and

subtract, 9-98
multifunction, parallel add and subtract,

9-93
multifunction computations, 2-41, G-11
multifunction instructions, 9-1, 9-91

registers, 9-91
multiplication/addition (Rn = MRF + Rx *

Ry mod2) computation, 9-55
multiplication computation, 9-54
multiplication (Fn = Fx * Fy) computation,

9-62
multiplication/subtraction (Rn = MRF –

Rx * Ry mod2) computation, 9-56
multiplier, 1-6, G-11

64-bit product, 2-8
clear operation, 2-25
fixed-point overflow status (MOS) bit,

2-26, B-20

multiplier (continued)
floating-point invalid (MI) bit, 2-26,

B-16
floating-point invalid status (MIS) bit,

2-26, B-20
floating-point overflow status (MVS) bit,

2-26, B-20
floating-point underflow (MU) bit, 2-26,

B-16
floating-point underflow status (MUS)

bit, 2-26, B-20
input modifiers, 2-29
instructions, 2-22, 2-27
MRF/B (multiplier result

foreground/background) registers,
2-22, 2-23

operations, 2-22, 2-26, 9-50, 9-51, 9-52
overflow (MV) bit, 2-26, 3-41, A-16,

B-15
registers, A-12
results (MRF/MRB) registers, 2-40
results (MRFx and MRBx) registers,

listed, B-22
rounding, 2-25
saturation, 2-25
signed (MS) bit, A-16
status, 2-15, 2-26

multiplier signed (MS) bit, 3-41
multiply-accumulate, 9-95
multiply accumulator, 2-22
multiply accumulator, See also multiplier
MU (multiplier floating-point underflow)

bit, 2-26, B-16
MUS (multiplier floating-point underflow)

bit, 2-26, B-20
MV (multiplier not overflow) bit, 2-26,

3-41, B-15
MVS (multiplier floating-point overflow)

bit, 2-26, B-20

ADSP-2136x SHARC Processor Programming Reference I-17

Index

Mx (modify) registers, 4-2, 4-18, B-34,
G-11

N
nearest, round-to, 2-12
negate breakpoint (NEGx) bit, 6-9
nested

interrupt routines, 3-83
loops, 3-43

nesting multiple interrupts enable
(NESTM) bit, 3-79, B-6

no boot mode (NOBOOT) bit, 6-10
non counter based loops, 3-53
NOP (Type 21), 8-80, 8-81, A-8
NOP (Type 21), 8-80
normal word, 5-19, 5-35

accesses with LW, G-11
data access, 5-35
mixing 32-bit data and 48-bit

instructions, 5-20
SIMD mode, 5-50, 5-54
SISD mode, 5-48, 5-52

not-a-number (NAN), 2-12
notation summary, instruction set, A-14
NOT computation, 9-23
not equal (NE), 3-41, A-16
NOT LCE (loop counter not expired)

condition, 3-52
numbers, infinity, 2-4

O
opcode acronyms, A-19 to A-23
operands, 2-22, 2-30, 2-37, G-3

in ALU, 2-17
operands and results

storage for, B-22
operations

conditional compute, 3-61
nonsequential, 3-5

operations (continued)
OR, logical, 8-28, 9-3, 9-21, 9-63, 9-67,

9-75, 9-86
OR (logical) computation, 9-21
OSPID (operating system process ID)

register, 6-16
overflow, ALU, multiplier, or shifter, 3-41
overflow, ALU (AV) bit, 2-18
overflow and underflow, 2-7, 2-14
overwriting bits, 5-15

P
packing (16-to-32 data), 2-6
parallel

add and subtract, 9-93
multiplier and ALU, 9-95
multiplier with add and subtract, 9-98

parallel accesses to data and program
memory, 8-3

parallel assembly code (multifunction
computation or SIMD operations),
1-18

parallel operations, 2-41, G-11
PASS computation, 9-19, 9-35
PCEM (PC stack empty bit, 3-36, B-21
PCEM (PC stack empty) bit, B-21
PCFL (PC stack full) bit, 3-36, B-21
PC (program counter) register, 3-2, 3-28,

3-35, B-30, G-4
PC (program counter) stack, 8-31, 8-35,

8-55, 8-79
PC-relative, 3-28
PC-relative address, A-13
PC stack pointer (PCSTKP) register, 3-33
PCSTK (PC stack) register, 3-85, B-30
PCSTKP (PC stack pointer) register, 3-36,

3-85, B-31
peripherals, described, G-12
peripherals, processor, 1-11

Index

I-18 ADSP-2136x SHARC Processor Programming Reference

PEYEN (processing element Y enable) bit,
SIMD mode, 2-11, 2-45, 4-3, 4-6,
4-20, 5-28, 5-36

PIDx (processor ID) bit, B-42
pins

address (AD), B-25
boundary scan (JTAG), 6-2
CLKIN (clock input), 6-2
clock configuration (CLK_CFG), B-39
flag, A-11, B-25, B-42
interrupt (IRQ2-0), 3-74
test access port (JTAG TAP), 6-1
timer (through SRU), 7-1

PLLDx (PLL divider) bits, B-40
PLLM (PLL multiplier) bit, B-40
PMCTL (power management control)

register, B-38, B-40
PMDAx (program data address start)

register, 6-13
pop

loop counter stack, 3-57
program counter (PC) stack, 3-27
status stack, 3-79

porting from previous SHARCs
assembly syntax, 2-38
performance, 2-46
symbol changes, 1-18

post-modify, A-13, A-14
post-modify addressing, 1-8, 4-1, 4-11,

4-25, G-12
power management control (PMCTL)

register, B-38
precision

16-bit, 2-13
40-bit, 2-13
defined, G-12

pre-modify, A-13, A-14
pre-modify addressing, 1-8, 4-1, 4-11,

4-25, 4-26, G-13
primary registers, 1-9, 2-37

processing elements, 1-2, 1-6, 1-7, 2-1,
2-38

data flow, 2-1
features, 2-1
shifter, 2-1

processing element Y enable (PEYEN) bit,
SIMD mode, 2-11, 2-45, 4-3, 4-6,
4-20, 5-28, 5-36

processing interrupts, 3-70
processor

architectural overview, 1-5
core, 1-6
design advantages, 1-1

processor core, 1-6
buses, 1-10
enhancements, 1-16

product-related documents, xxviii
program counter, relative address (PC)

register, G-4
program counter, stack (PC) register, 3-35
program counter (PC) register, 3-2, 3-28,

3-35, B-30
program counter stack empty (PCEM) bit,

3-36, B-21
program counter stack full (PCFL) bit,

3-36, B-21
program counter stack (PCSTK) register,

3-85, B-30
program counter stack pointer (PCSTKP)

register, 3-36, 3-85, B-31
program flow

control summary, A-4
nonsequential, 3-5

program memory address (PMDAx)
register, 6-13

program memory bus exchange (PX)
register, 1-10, 5-7, 5-27, B-23

program sequence address (PSAx) register,
6-12

ADSP-2136x SHARC Processor Programming Reference I-19

Index

program sequencer, A-9
control, 1-7
latency, 3-85

PSAx (breakpoint) register, 6-12
PSx, DMx, IOx, & EPx registers, 6-11 to

6-13
pulse width count and capture

(WDTH_CAP) mode, 7-12
pulse width modulation (PWMOUT)

mode, 7-9
purpose of this manual, xxiii
push

loop counter stack, 3-58
program counter (PC) stack, 3-26
status stack, 3-78

push|pop stacks/flush cache (Type 20),
8-78, A-7

push|pop stacks/flush cache (Type 20),
8-78

pushing the loop counter stack for nested
loops

illustrated, 3-58
PWMOUT (pulse width modulation)

mode, 7-9
PX (memory bus exchange) register, 5-27
PX (program memory bus exchange)

register, 1-10, 5-7, B-23

R
RAM memory, 5-3
read latency, 3-23
RECIPS (reciprocal) computation, 9-43
Reference Notation Summary, A-14, A-19
register codes , A-25, A-27
register codes, JTAG instruction, 6-6
register files, 2-37, G-3

See also data register files
write precedence, 2-37

register latency, 3-85
See also latency

register load broadcasting, 5-29
See also broadcast load

registers
See also emulator registers
See also timer registers
ASTATxy, 2-15, 2-18
base, 4-2, 4-4, 4-18, B-34, G-1
boundary, 6-15
BRKCTL (breakpoint control), 6-11
complementary, 2-47, 5-33, G-6
DAG, B-34
DAG secondary, 4-4
data, 1-6, 2-37, 2-48, G-3
data file, listed, B-22
data (R0-R15, S0-S15) registers, B-22
decode address, 3-2
decode address (DADDR), 3-2, B-32
EMUCLKx (emulator clock), 6-15
for multifunction computations, 9-91
index, 4-4, 4-11
IRPTL (interrupt), 3-73
length, 4-4
loads, and memory transfers, 5-36
memory mapped, B-43
MODE1, 2-2, 2-11, 2-14
modify, 4-4, 4-11
neighbor, 5-33, 5-62, 5-64, 5-66
PC stack, 3-35
power management control (PMCTL),

B-40
program memory bus exchange (PX), 5-7
register file size, 2-49
restrictions on data registers, 2-41
secondary hi/lo (SRRFH/L), 2-40
sticky status (STKYx), 5-31
STKYxy (sticky), 2-16
system, B-2
uncomplemented, 3-60

Index

I-20 ADSP-2136x SHARC Processor Programming Reference

registers (continued)
universal (Ureg), 1-10, 2-47, 5-7, B-2,

G-16
user-defined status (USTATx), B-21

register-to-register
moves, 2-51, 5-7
swaps, 2-51, G-13
transfers, 2-49

register types summary, A-9
related documents, xxix
restrictions

breakpoints, setting, 6-5
DAG register, 4-23
delayed branch, 3-32
mixing 32- and 48-bit words, 5-23
on ending loops, 3-43
on short loops, 3-46
register, 8-3

return from an interrupt service routine
(RTI), 8-48

return from a subroutine (RTS), 8-32,
8-36, 8-48, 8-49

return from subroutine | interrupt,
compute (Type 11), 8-48

return from subroutine|interrupt/compute
(Type 11), A-5

return (RTI/RTS) instructions, 3-27, 3-71
revision ID (REVPID) register, B-42
RND32 (round to 32 bits) bit, 2-11
RND (round) computation, 9-36, 9-58
ROM based security, 1-15
ROM memory, 5-3
rotate, 2-51

See also swap operator
rotate bits, 2-30
ROT (rotate) computation, 9-68
rounded output, 2-29
rounding, 2-12, 2-14
rounding 32-bit data (RND32) bit, B-6
rounding mode, 2-11, 2-14, B-6

RSQRTS (reciprocal square root)
computation, 9-45

RTI/RTS (return from/to interrupt)
instructions, 3-27, 3-71

RUNBIST (unsupported) instruction, 6-6

S
SAMPLE (emulator) instruction, 6-6
SAT computation, 9-57
saturation (ALU saturation mode), G-13
saturation maximum values, 2-25
saturation mode, 9-6, 9-7, 9-8, 9-9, 9-13,

9-14, 9-15, 9-16, 9-17, 9-18, 9-39,
9-40

saturation on store, G-15
SCALB (scale) computation, 9-37
secondary processing element, 2-45
secondary registers, 1-9, 2-39, 4-6, B-5

for computational units (SRCU) bit,
2-40, B-5

for DAGs (SRDxH/L) bits, 4-4, B-5
for register file (SRRFH/L) bit, B-5

secondary registers for DAGs (SRDxH/L)
bits, B-5

secondary registers for register file
(SRRFH/L) bit, B-5

security in ROM, 1-15
semaphores, G-13
sensing interrupts, 3-74
serial port (SPORT), G-14

multichannel operation, G-15
serial scan path, 6-6
serial test access port (TAP), 6-2
set, bit, 2-30
S field, address, B-30
shadow write FIFO, use, 5-81
SHARC architecture, G-14

background information, 1-15
porting from previous SHARCs, 1-15

shift bits, 2-30

ADSP-2136x SHARC Processor Programming Reference I-21

Index

shifter, 1-6, 2-30, G-14
immediate operation, 9-62
instructions, 2-13, 2-35
operations, 2-30, 2-34, 9-62, 9-63, B-16
status flags, 2-34

shifter input sign (SS) bit, 2-8, B-17
shifter overflow (SV) bit, 2-8, A-16
shifter zero (SZ) bit, 2-8, A-16
short (16-bit data) sign extend (SSE) bit,

2-11, 5-35, B-6
short float data format, 9-89, 9-90
short word, 5-19, 5-35

16-bit format, 2-6
data access, 5-35
SIMD mode, 5-42, 5-46, 5-50
SISD mode, 5-39, 5-44

signal routing unit (SRU), 7-1
signals

breakpoint, 6-11
clock, 3-5, G-8
clock (CLKIN), 3-75, 3-82
core clock (CCLK), 5-4, 5-5
interrupt, 3-75
PWM waveform generation and, 7-11
test clock (TCK), 6-1, 6-2
timer, 7-1

signed
data, 2-14
fixed-point product, 2-8
input, 2-29

sign extension, B-6
SIMD (single-instruction, multiple-data)

mode, 1-7, 3-40, 5-37, B-6, B-9
complementary registers, 2-47
computational operations, 2-49
defined, 2-45
implicit operations, 2-47
status flags, 2-52

single-precision format, 2-12

single serial shift register path, 6-2
single-step (SS) bit, 6-8
SISD (single-instruction, single-data)

mode, 5-37
defined, 1-7
unidirectional register transfer, 2-51

software reset (SYSRST) bit, 6-8
Sony/Philips Digital InterFace (S/PDIF),

defined, G-14
SOVFI (stack overflow/full) bit, 3-36
S/PDIF (Sony/Philips Digital Interface),

G-14
SRAM (memory), 1-2
SRDxH/L (secondary registers for DAG)

bits, 4-4
SREG (system registers), B-2
SRRFH/L (secondary registers, register file)

bits, 2-40
SRU (signal routing unit), 7-1
SSEM (status stack empty) bit, 3-78, B-21
SSE (short word sign extension) bit, 2-11,

5-35
SS (shifter input sign) bit, 2-8, B-17
stacking status during interrupts, 3-78
stacks

and sequencing, 3-35
PC (program counter), 3-2, 3-20, 3-26,

3-32, 3-35, 3-70
PC (program counter), pushes and pops,

3-33
PC (program counter) latency in, 3-23
PC (program counter) writes to, 3-34
SSOV (status stack overflow) bit, 3-78,

B-21
stack overflow/full interrupt (SOVFI)

bit, 3-36
status, 3-36, 3-60, 3-70, 3-78
status, current values in, 3-79

Index

I-22 ADSP-2136x SHARC Processor Programming Reference

stalls
data and control, 3-14
for backward compatibility, 3-23
in branches, 3-16
in conditional addressing, 4-13
in conditional branches, 3-19
in data addressing, 4-12
instruction pipeline, 3-11 to 3-26
on PM and DM busses, 3-12
structural, 3-12
to optimize performance, 3-22
with JUMP(LA) modifier, 3-18

status registers, 3-83
status stack, 3-78, 8-48, 8-78

pop, 3-79
push, 3-78

status stack empty (SSEM) bit, 3-78, B-21
status stack overflow (SSOV) bit, 3-78,

B-21
sticky status (STKYx/y) register, 2-16,

2-27, 3-56, 3-57, 3-77, B-16, B-17
STKYx/y register, 2-16, 2-27, 3-56, 3-57,

3-77, B-16, B-17
STKYx/y registers, 5-31
subroutines, 3-1, G-15
subtract instructions, 2-43
subtraction computation, 9-7
subtraction (Fn = Fx – Fy) computation,

9-28
subtraction with borrow computation, 9-9
subtract/multiply, G-11
support, technical or customer, xxvi
SV (shifter overflow) bit, 2-8, 3-41, B-16
swap between universal registers, 8-18
swap register operator, 2-51, G-13
system control register (SYSCTL), 2-48,

3-26, 5-15, 5-20, 5-26, 5-35, 6-8
system register bit manipulation (Type 18),

8-72, A-7
system registers (SREG), A-11, B-2

SZ (shifter zero) bit, 2-8, B-16

T
TAP registers

boundary-scan, 6-15
TAP (test access port) pin, 6-1
TCB chain loading, G-15
TCK pin, 6-1
TCOUNT (timer count) register, 7-3
TDI (test data in) pin, 6-1
technical or customer support, xxvi
technical publications online, xxx
technical support, xxvi
termination codes, condition codes and

loop termination, 3-41, A-16
termination condition, 8-53, 8-55
test, bit, 2-30
test access port (TAP, JTAG port), 6-1
test clock (TCK) pin, 6-1
test data input (TDI) pin, 6-1
test flag (TF) condition, 3-40, 3-41
test flag true (TF) condition, A-16
test mode (TMODE) bit, 6-10
three column memory, 5-10
Time-Division-Multiplexed (TDM)

mode, G-15
TIMEN (timer enable) bit, 7-3, B-11
timer, 1-9, 7-3, A-10

enable (TIMEN) bit, 7-3
expired high priority (TMZHI) bit, 7-5
expired low priority (TMZLI) bit, 7-5
external event watchdog (EXT_CLK)

mode, 7-14
input/output (TMRx) pin, 7-1
interrupts, 7-7
modes, 7-1, B-35
pulse width count and capture

(WDTH_CAP) mode, 7-12
pulse width modulation (PWMOUT)

mode, 7-9

ADSP-2136x SHARC Processor Programming Reference I-23

Index

timer (continued)
registers, B-35
word count (TMxCNT) registers, 7-1

timer registers, B-35
count (TCOUNT) register, 7-3
period (TPERIOD) register, 7-3
timer control (TMxCTL), 7-1, B-35
timer count (TMxCNT), 7-1, B-36
timer global status and control

(TMSTAT), 7-5
timer period (TPERIOD), 7-3
timer status (TMSTAT), B-37
timer width (TMxW), B-37
timer word period (TMxPRD), B-36
x high word period (T_PRDHx)

registers, 7-1
x high word pulse width (T_WHRx)

registers, 7-1
x low word count (TMxCNT) registers,

B-36
x low word period (TMxPRD) registers,

B-36
x low word pulse width (T_WLRx)

registers, B-37
TMRx pin, 7-1
TMSTAT (timer global status and control)

register, 7-5, B-37
TMS (test mode select) pin, 6-1
TMxCNT (timer word count) registers,

7-1, B-36
TMxCTL (timer control) registers, 7-1,

B-35
TMxPRD (timer period) registers, B-36
TMxW (timer width) registers, B-37
TMZHI (timer expired high priority) bit,

7-5
TMZLI (timer expired low priority) bit,

7-5
toggle bit, 2-30
top-of-loop address, 3-38

top-of-PC stack, 3-36
TPERIOD (timer period) register, 7-3
T_PRDHx (timer period) registers, 7-1,

B-36
transfer between universal registers, 8-18
transfer control block (TCB), G-16
transfer (MR = RN/Rn = MR)

computation, 9-60
tri-state vs. three-state, G-16
TRST (test reset) pin, 6-1
true always (TRUE) if condition, 3-42,

A-17
truncate, rounding (TRUNC) bit, 2-11,

B-6
TRUNC computation, 9-40
TRUNC (truncate rounding) bit, 2-11
T_WHRx (timer word pulse width)

registers, 7-1
T_WLRx (timer width) registers, B-37
two’s-complement data, 2-14, 2-17

U
U64MA bit, 5-30, 5-37, B-11, B-21
UMODE (user mode breakpoint) bit, 6-11
unaligned 64-bit memory access (U64MA)

bit, B-11
uncomplemented register, 3-60
underflow, 9-89, 9-90
underflow, multiplier, 3-41
underflow exception, 2-12
universal registers (Ureg), 1-10, 2-47, 5-7,

8-59, 8-62, A-9, A-23, A-25, A-27,
B-2, G-16

unpacking (32-to-16-bit data), 2-6
unsigned

data, 2-14
fixed-point product, 2-11
input, 2-29

unsupported instructions
IPCODE, 6-6

Index

I-24 ADSP-2136x SHARC Processor Programming Reference

update an I register with an M register, 8-27
Ureg«···»DM|PM (direct addressing)

(Type 14), 8-59, A-6
Ureg«···»DM|PM (indirect addressing)

(Type 15), 8-62, A-6
Uregs (universal registers), B-2
USERCODE instruction

unsupported, 6-6
user-definable breakpoint interrupts, 6-3
user-defined status registers (USTATx)

registers, B-21
user-defined status (USTATx) register,

B-21
using the cache, 3-8
USTATx registers, B-21

V
valid data registers for input operands, 9-95
valid sources of the input operands, 9-98
values, saturation maximum, 2-25
Von Neumann architecture, 5-3, G-16

W
wait states, defined, G-16
watchdog timer, 7-9
WDTH_CAP (width capture) mode, 7-1,

7-12
word rotations, 5-20
words, mixing with 32-bit, 5-21
wrap around, buffer, 4-10, 4-14, 4-17
wrapping memory, 5-13
write 32-bit immediate data to DM or PM,

8-66
write 32-bit immediate data to register,

8-69
writing memory, 5-81

X
XOR (logical) computation, 9-22

Z
zero, round-to, 2-12
zero (MRF = 0) computation, 9-59

	Contents
	Purpose of This Manual xxiii
	Intended Audience xxiii
	Manual Contents xxiv
	What’s New in This Manual xxvi
	Technical or Customer Support xxvi
	Supported Processors xxvii
	Product Information xxvii
	MyAnalog.com xxviii
	Processor Product Information xxviii
	Related Documents xxix
	Online Technical Documentation xxx
	Accessing Documentation From VisualDSP++ xxxi
	Accessing Documentation From Windows xxxi
	Accessing Documentation From the Web xxxii

	Printed Manuals xxxii
	VisualDSP++ Documentation Set xxxii
	Hardware Tools Manuals xxxiii
	Processor Manuals xxxiii
	Data Sheets xxxiii

	Conventions xxxiv

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Printed Manuals

	Conventions

	1 Introduction
	ADSP-2136x Design Advantages
	ADSP-2136x Architectural Overview
	Processor Core
	Processing Elements
	Program Sequence Control
	Processor Internal Buses

	Processor Peripherals
	Internal Memory (SRAM)
	Timers
	JTAG Port
	Rom Based Security

	Development Tools
	Differences From Previous SHARC Processors
	Processor Core Enhancements
	Processor Internal Bus Enhancements
	Memory Organization Enhancements
	JTAG Port Enhancements
	Instruction Set Enhancements

	2 Processing Elements
	Numeric Formats
	IEEE Single-Precision Floating-Point Data Format
	Extended-Precision Floating-Point Format
	Short Word Floating-Point Format
	Packing for Floating-Point Data
	Fixed-Point Formats

	Setting Computational Modes
	32-Bit Floating-Point Format (Normal Word)
	40-Bit Floating-Point Format
	16-Bit Floating-Point Format (Short Word)
	32-Bit Fixed-Point Format
	Rounding Mode

	Using Computational Status
	Arithmetic Logic Unit (ALU)
	ALU Operation
	ALU Saturation
	ALU Status Flags
	ALU Instruction Summary

	Multiply Accumulator (Multiplier)
	Multiplier Operation
	Multiplier Result Register (Fixed-Point)
	Multiplier Status Flags
	Multiplier Instruction Summary

	Barrel Shifter (Shifter)
	Shifter Operation
	Shifter Status Flags
	Shifter Instruction Summary

	Data Register File
	Alternate (Secondary) Data Registers
	Multifunction Computations
	Secondary Processing Element (PEy)
	Dual Compute Units Sets
	Dual Register Files
	Dual Alternate Registers
	SIMD (Computational) Operations
	SIMD and Status Flags

	3 Program Sequencer
	Instruction Pipeline
	Memory Conflicts
	Bus Conflicts
	Block Conflicts

	Instruction Cache
	Using the Cache
	Optimizing Cache Usage

	Instruction Pipeline Stalls
	Structural Hazard Stalls
	Data Access and Instruction Fetch on the PM Bus
	Data Access Over the DM and PM Buses
	Update and Load Index Register
	Reading I, M, B, L Registers
	DMA Block Conflict with PM or DM Access

	Data and Control Hazard Stalls
	Address Generation
	Branch
	Compute with Post-modify
	A JUMP With a LA Modifier Is Used To Abort a Loop
	Loops

	Stalls in Conditional Branches
	Address Generation Using I Registers After a CJUMP
	RFRAME Instruction
	Other Instructions

	Latency
	Branches and Sequencing
	Conditional Branches
	Delayed Branches
	Restrictions and Limitations When Using Delayed Branches

	Stacks and Sequencing
	Loops and Sequencing
	Counter Based Loops
	Arithmetic Loops
	Conditional Sequencing
	Restrictions on Ending Loops
	Short Loops
	Restrictions on Short Loops
	Evaluation of NOT LCE Condition in Counter Based Loops
	Arithmetic or Non-Counter Based Loops

	Loop Address Stack
	Loop Status

	SIMD Mode and Sequencing
	Conditional Compute Operations
	Conditional Branches and Loops
	Conditional Data Moves
	Case #1: Complementary Register Pair Data Move
	Case #2: Uncomplimentary-to-Complementary Register Move
	Case #3: Complementary-to-Uncomplimentary Register Move
	Case #4: External Memory or IOP Memory Space Data Move
	Case #5: Uncomplimentary Register Data Move
	Case #6: Conditional DAG Operations

	Interrupts and Sequencing
	Sensing External Interrupts
	Masking Interrupts
	Latching Interrupts
	Stacking Status During Interrupts
	Nesting Interrupts
	Reusing Interrupts
	Interrupting IDLE

	Summary

	4 Data Address Generators
	Setting DAG Modes
	Circular Buffering Mode
	Broadcast Loading Mode
	Alternate (Secondary) DAG Registers
	Example 1
	Example 2

	Bit-Reverse Addressing Mode

	Using DAG Status
	DAG Operations
	Addressing With DAGs
	Data Addressing Stalls
	Addressing Circular Buffers
	Modifying DAG Registers
	Addressing in SISD and SIMD Modes

	DAGs, Registers, and Memory
	DAG Register-to-Bus Alignment
	DAG Register Transfer Restrictions

	DAG Instruction Summary

	5 Memory
	Internal Memory
	Processor Memory Architecture

	Buses
	Internal Address and Data Buses
	Internal Data Bus Exchange

	ADSP-2136x Memory Maps
	Internal Memory
	Shared Memory
	External Memory
	External Address Space
	SDRAM Address Mapping

	Memory Organization and Word Size
	Placing 32-Bit and 48-Bit Words
	Mixing 32-Bit Words and 48-Bit Words
	Restrictions on Mixing 32-Bit Words and 48-Bit Words
	Example: Calculating a Starting Address for 32-Bit Addresses
	48-Bit Word Allocation

	Using Boot Memory
	Reading From Boot Memory

	Internal Interrupt Vector Table
	Internal Memory Data Width
	Secondary Processor Element (PEy)
	Broadcast Register Loads
	Illegal I/O Processor Register Access
	Unaligned 64-Bit Memory Access

	Using Memory Access Status
	Accessing Memory
	Access Word Size
	Long Word (64-Bit) Accesses
	Instruction Word (48-Bit) and Extended-Precision Normal Word (40-Bit) Accesses
	Normal Word (32-Bit) Accesses
	Short Word (16-Bit) Accesses

	Setting Data Access Modes
	SYSCTL Register Control Bits
	Mode 1 Register Control Bits
	Mode 2 Register Control Bits

	SISD, SIMD, and Broadcast Load Modes
	Single- and Dual-Data Accesses
	Instruction Examples

	Data Access Options
	Short Word Addressing of Single-Data in SISD Mode
	Short Word Addressing of Single-Data in SIMD Mode
	Short Word Addressing of Dual-Data in SISD Mode
	Short Word Addressing of Dual-Data in SIMD Mode
	32-Bit Normal Word Addressing of Single-Data in SISD Mode
	32-Bit Normal Word Addressing of Single-Data in SIMD Mode
	32-Bit Normal Word Addressing of Dual-Data in SISD Mode
	32-Bit Normal Word Addressing of Dual-Data in SIMD Mode
	Extended-Precision Normal Word Addressing of Single-Data
	Extended-Precision Normal Word Addressing of Dual-Data in SISD Mode
	Extended-Precision Normal Word Addressing of Dual-Data in SIMD Mode
	Long Word Addressing of Single-Data
	Long Word Addressing of Dual-Data in SISD Mode
	Long Word Addressing of Dual-Data in SIMD Mode
	Mixed-Word Width Addressing of Dual-Data in SISD Mode
	Mixed-Word Width Addressing of Dual-Data in SIMD Mode
	Broadcast Load Access

	Shadow Write FIFO
	Shadow Write FIFO Use in SIMD Mode

	6 JTAG Test Emulation Port
	JTAG Test Access Port
	Boundary Scan
	Background Telemetry Channel (BTC)
	User-Definable Breakpoint Interrupts
	Restrictions
	Silicon Revision ID

	JTAG Related Registers
	Instruction Register
	Emulation Control Register (EMUCTL)
	Breakpoint Control Register (BRKCTL)
	Breakpoint Registers (PSx, DMx, IOx, and EPx)

	Enhanced Emulation Status Register (EEMUSTAT)
	EEMUIN Register
	EEMUOUT Register
	Emulation Clock Counter Registers (EMUCLK, EMUCLK2)
	Boundary Register
	EMUN Register
	EMUIDLE Instruction
	Operating System Process ID Register (OSPID)

	Private Instructions
	References

	7 Timer
	Timer Architecture
	Timer and Sequencing
	Timer Status and Control
	Timer Interrupts

	Enabling a Timer
	Pulse Width Modulation Mode (PWM_OUT)
	PWM Waveform Generation
	Single-Pulse Generation

	Pulse Width Count and Capture Mode (WDTH_CAP)
	External Event Watchdog Mode (EXT_CLK)

	Timer Programming Examples

	8 Instruction Set
	Type 1: Compute, Dreg«···»DM | Dreg«···»PM
	Type 1: Compute, Dreg«···»DM | Dreg«···»PM

	Type 2: Compute
	Type 2: Compute

	Type 3: Compute, ureg«···»DM | PM, register modify
	Type 3: Compute, ureg«···»DM | PM, register modify

	Type 4: Compute, dreg«···»DM | PM, data modify
	Type 4: Compute, dreg«···»DM | PM, data modify

	Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg
	Type 5: Compute, ureg«··· »ureg | Xdreg<->Ydreg

	Type 6: Immediate Shift, dreg«···»DM | PM
	Type 6: Immediate Shift, dreg«···»DM | PM

	Type 7: Compute, modify
	Type 7: Compute, modify

	Type 8: Direct Jump | Call
	Type 8: Direct Jump | Call

	Type 9: Indirect Jump | Call, Compute
	Type 9: Indirect Jump | Call, Compute

	Type 10: Indirect Jump | Compute, dreg«···»DM
	Type 10: Indirect Jump | Compute, dreg«···»DM

	Type 11: Return From Subroutine | Interrupt, Compute
	Type 11: Return From Subroutine | Interrupt, Compute

	Type 12: Do Until Counter Expired
	Type 12: Do Until Counter Expired

	Type 13: Do Until
	Type 13: Do Until

	Type 14: Ureg«···»DM | PM (direct addressing)
	Type 14: Ureg«···»DM | PM (direct addressing)

	Type 15: Ureg«···»DM | PM (indirect addressing)
	Type 15: Ureg«···»DM | PM (indirect addressing)

	Type 16: Immediate data···»DM | PM
	Type 16: Immediate data···»DM | PM

	Type 17: Immediate data···»Ureg
	Type 17: Immediate data···»Ureg

	Type 18: System Register Bit Manipulation
	Type 18: System Register Bit Manipulation

	Type 19: I Register Modify | Bit-Reverse
	Type 19: I Register Modify | Bit-Reverse

	Type 20: Push, Pop Stacks, Flush Cache
	Type 20: Push, Pop Stacks, Flush Cache

	Type 21: Nop
	Type 21: Nop

	Type 22: Idle
	Type 22: Idle

	Type 25: Cjump/Rframe
	Type 25: Cjump/Rframe

	9 Computations Reference
	Compute Field
	ALU Fixed-Point Operations
	ALU Floating-Point Operations

	Rn = Rx + Ry
	Rn = Rx + Ry

	Rn = Rx - Ry
	Rn = Rx - Ry

	Rn = Rx + Ry + CI
	Rn = Rx + Ry + CI

	Rn = Rx - Ry + CI - 1
	Rn = Rx - Ry + CI - 1

	Rn = (Rx + Ry)/2
	Rn = (Rx + Ry)/2

	COMP(Rx, Ry)
	COMP(Rx, Ry)

	COMPU(Rx, Ry)
	COMPU(Rx, Ry)

	Rn = Rx + CI
	Rn = Rx + CI

	Rn = Rx + CI - 1
	Rn = Rx + CI - 1

	Rn = Rx + 1
	Rn = Rx + 1

	Rn = Rx - 1
	Rn = Rx - 1

	Rn = -Rx
	Rn = -Rx

	Rn = ABS Rx
	Rn = ABS Rx

	Rn = PASS Rx
	Rn = PASS Rx

	Rn = Rx AND Ry
	Rn = Rx AND Ry

	Rn = Rx OR Ry
	Rn = Rx OR Ry

	Rn = Rx XOR Ry
	Rn = Rx XOR Ry

	Rn = NOT Rx
	Rn = NOT Rx

	Rn = MIN(Rx, Ry)
	Rn = MIN(Rx, Ry)

	Rn = MAX(Rx, Ry)
	Rn = MAX(Rx, Ry)

	Rn = CLIP Rx BY Ry
	Rn = CLIP Rx BY Ry

	Fn = Fx + Fy
	Fn = Fx + Fy

	Fn = Fx - Fy
	Fn = Fx - Fy

	Fn = ABS (Fx + Fy)
	Fn = ABS (Fx + Fy)

	Fn = ABS (Fx - Fy)
	Fn = ABS (Fx - Fy)

	Fn = (Fx + Fy)/2
	Fn = (Fx + Fy)/2

	COMP(Fx, Fy)
	COMP(Fx, Fy)

	Fn = -Fx
	Fn = -Fx

	Fn = ABS Fx
	Fn = ABS Fx

	Fn = PASS Fx
	Fn = PASS Fx

	Fn = RND Fx
	Fn = RND Fx

	Fn = SCALB Fx BY Ry
	Fn = SCALB Fx BY Ry

	Rn = MANT Fx
	Rn = MANT Fx

	Rn = LOGB Fx
	Rn = LOGB Fx

	Rn = FIX Fx Rn = TRUNC Fx Rn = FIX Fx BY Ry Rn = TRUNC Fx BY Ry
	Rn = FIX Fx Rn = TRUNC Fx Rn = FIX Fx BY Ry Rn = TRUNC Fx BY Ry

	Fn = FLOAT Rx BY Ry Fn = FLOAT Rx
	Fn = FLOAT Rx BY Ry Fn = FLOAT Rx

	Fn = RECIPS Fx
	Fn = RECIPS Fx

	Fn = RSQRTS Fx
	Fn = RSQRTS Fx

	Fn = Fx COPYSIGN Fy
	Fn = Fx COPYSIGN Fy

	Fn = MIN(Fx, Fy)
	Fn = MIN(Fx, Fy)

	Fn = MAX(Fx, Fy)
	Fn = MAX(Fx, Fy)

	Fn = CLIP Fx BY Fy
	Fn = CLIP Fx BY Fy
	Multiplier Fixed-Point Operations
	Multiplier Floating-Point Operations
	Mod1 and Mod2 Modifiers

	Rn = Rx * Ry mod2 MRF = Rx * Ry mod2 MRB Rx * Ry mod2
	Rn = Rx * Ry mod2 MRF = Rx * Ry mod2 MRB Rx * Ry mod2

	Rn = MRF + Rx * Ry mod2 Rn = MRB + Rx * Ry mod2 MRF = MRF + Rx * Ry mod2 MRB = MRB + Rx * Ry mod2
	Rn = MRF + Rx * Ry mod2 Rn = MRB + Rx * Ry mod2 MRF = MRF + Rx * Ry mod2 MRB = MRB + Rx * Ry mod2

	Rn = MRF - Rx * Ry mod2 Rn = MRB - Rx * Ry mod2 MRF = MRF - Rx * Ry mod2 MRB = MRB - Rx * Ry mod2
	Rn = MRF - Rx * Ry mod2 Rn = MRB - Rx * Ry mod2 MRF = MRF - Rx * Ry mod2 MRB = MRB - Rx * Ry mod2

	Rn = SAT MRF mod1 Rn = SAT MRB mod1 MRF = SAT MRF mod1 MRB = SAT MRB mod1
	Rn = SAT MRF mod1 Rn = SAT MRB mod1 MRF = SAT MRF mod1 MRB = SAT MRB mod1

	Rn = RND MRF mod1 Rn = RND MRB mod1 MRF = RND MRF mod1 MRB = RND MRB mod1
	Rn = RND MRF mod1 Rn = RND MRB mod1 MRF = RND MRF mod1 MRB = RND MRB mod1

	MRF = 0 MRB = 0
	MRF = 0 MRB = 0

	MRxF/B = Rn/Rn = MRxF/B
	MRxF/B = Rn/Rn = MRxF/B

	Fn = Fx * Fy
	Fn = Fx * Fy
	Shifter Opcodes

	Rn = LSHIFT Rx BY Ry Rn = LSHIFT Rx BY <data8>
	Rn = LSHIFT Rx BY Ry Rn = LSHIFT Rx BY <data8>

	Rn = Rn OR LSHIFT Rx BY Ry Rn = Rn OR LSHIFT Rx BY <data8>
	Rn = Rn OR LSHIFT Rx BY Ry Rn = Rn OR LSHIFT Rx BY <data8>

	Rn = ASHIFT Rx BY Ry Rn = ASHIFT Rx BY <data8>
	Rn = ASHIFT Rx BY Ry Rn = ASHIFT Rx BY <data8>

	Rn = Rn OR ASHIFT Rx BY Ry Rn = Rn OR ASHIFT Rx BY <data8>
	Rn = Rn OR ASHIFT Rx BY Ry Rn = Rn OR ASHIFT Rx BY <data8>

	Rn = ROT Rx BY Ry Rn = ROT Rx BY <data8>
	Rn = ROT Rx BY Ry Rn = ROT Rx BY <data8>

	Rn = BCLR Rx BY Ry Rn = BCLR Rx BY <data8>
	Rn = BCLR Rx BY Ry Rn = BCLR Rx BY <data8>

	Rn = BSET Rx BY Ry Rn = BSET Rx BY <data8>
	Rn = BSET Rx BY Ry Rn = BSET Rx BY <data8>

	Rn = BTGL Rx BY Ry Rn = BTGL Rx BY <data8>
	Rn = BTGL Rx BY Ry Rn = BTGL Rx BY <data8>

	BTST Rx BY Ry BTST Rx BY <data8>
	BTST Rx BY Ry BTST Rx BY <data8>

	Rn = FDEP Rx BY Ry Rn = FDEP Rx BY <bit6>:<len6>
	Rn = FDEP Rx BY Ry Rn = FDEP Rx BY <bit6>:<len6>

	Rn = Rn OR FDEP Rx BY Ry Rn = Rn OR FDEP Rx BY <bit6>:<len6>
	Rn = Rn OR FDEP Rx BY Ry Rn = Rn OR FDEP Rx BY <bit6>:<len6>

	Rn = FDEP Rx BY Ry (SE) Rn = FDEP Rx BY <bit6>:<len6> (SE)
	Rn = FDEP Rx BY Ry (SE) Rn = FDEP Rx BY <bit6>:<len6> (SE)

	Rn = Rn OR FDEP Rx BY Ry (SE) Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
	Rn = Rn OR FDEP Rx BY Ry (SE) Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)

	Rn = FEXT Rx BY Ry Rn = FEXT Rx BY <bit6>:<len6>
	Rn = FEXT Rx BY Ry Rn = FEXT Rx BY <bit6>:<len6>

	Rn = FEXT Rx BY Ry (SE) Rn = FEXT Rx BY <bit6>:<len6> (SE)
	Rn = FEXT Rx BY Ry (SE) Rn = FEXT Rx BY <bit6>:<len6> (SE)

	Rn = EXP Rx
	Rn = EXP Rx

	Rn = EXP Rx (EX)
	Rn = EXP Rx (EX)

	Rn = LEFTZ Rx
	Rn = LEFTZ Rx

	Rn = LEFTO Rx
	Rn = LEFTO Rx

	Rn = FPACK Fx
	Rn = FPACK Fx

	Fn = FUNPACK Rx
	Fn = FUNPACK Rx
	Operand Constraints

	Parallel Add and Subtract
	Parallel Add and Subtract

	Parallel Multiplier and ALU
	Parallel Multiplier and ALU

	Parallel Multiplier With Add and Subtract
	Parallel Multiplier With Add and Subtract

	A Instruction Set Quick Reference
	Chapter Overview
	Compute and Move/Modify Summary
	Program Flow Control Summary
	Immediate Move Summary
	Miscellaneous Operations Summary
	Register Types Summary
	Memory Addressing Summary
	Instruction Set Notation Summary
	Conditional Execution Codes Summary
	SISD/SIMD Conditional Testing Summary
	Instruction Opcode Acronym Summary
	Universal Register Codes
	ADSP-2136x Instruction Opcode Map

	B Registers
	Control and Status System Registers
	Mode Control 1 Register (MODE1)
	Mode Mask Register (MMASK)
	Mode Control 2 Register (MODE2)
	Arithmetic Status Registers (ASTATx and ASTATy)
	Sticky Status Registers (STKYx and STKYy)
	User-Defined Status Registers (USTATx)

	Processing Element Registers
	Data File Data Registers (Rx, Fx, Sx)
	Multiplier Results Registers (MRFx, MRBx)
	Program Memory Bus Exchange Register (PX)

	Program Sequencer Registers
	Flag Value Register (FLAGS)
	Program Counter Register (PC)
	Program Counter Stack Register (PCSTK)
	Program Counter Stack Pointer Register (PCSTKP)
	Fetch Address Register (FADDR)
	Decode Address Register (DADDR)
	Loop Address Stack Register (LADDR)
	Current Loop Counter Register (CURLCNTR)
	Loop Counter Register (LCNTR)
	Timer Period Register (TPERIOD)
	Timer Count Register (TCOUNT)

	Data Address Generator Registers
	Index Registers (Ix)
	Modify Registers (Mx)
	Length and Base Registers (Lx, Bx)

	Timer Registers
	Timer Configuration Registers (TMxCTL)
	Timer Counter Registers (TMxCNT)
	Timer Period Registers (TMxPRD)
	Timer Width Register (TMxW)
	Timer Global Status and Control Register (TMSTAT)

	Power Management Registers
	Power Management Control Register (PMCTL)
	Revision ID Register (REVPID)

	I/O Processor Registers

	G Glossary
	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

